Tarea6Eq13 - Problema 1 (extrado del libro de texto,...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Problema 1 (extraído del libro de texto, problema 17, página 504) A product can be produced on four different machines. Each machine has a fixed setup cost, variable production costs per-unit-processed, and a production capacity given in Table 15. A total of 2,000 units of the product must be produced. Formulate an IP whose solution will tell us how to minimize total costs. Solucion: Variables de decision: Cantidad de producto fabricado en la maquina 1 Cantidad de producto fabricado en la maquina 2 Cantidad de producto fabricado en la maquina 3 Cantidad de producto fabricado en la maquina 4 Funcion objetivo: MinZ= S.A. 2000 0 Binarias X 1 = X 2 = x 3 = x 4 = 20X 1 +24X 2 +16X 3 +28X 4 +1000Y 1 +920Y 2 +800Y 3 +700Y 4 X 1 ≤ 900Y 1 X 2 ≤ 1000Y 2 X 3 ≤ 1200Y 3 X 4 ≤ 1600Y 4 X 1 +X 2 +X 3 +X 4 X J Y J
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Problema 2 (extraído del libro de texto, problema 23, página 505) At a machine tool plant, five jobs must be completed each day. The time it takes to do each job depends on the machine used to do the job. If a machine is used at all, there is a setup time required. The relevant times are given in Table 20. The company’s goal is to minimize the sum of the setup and machine operation times needed to complete all jobs. Formulate and solve (with LINDO, LINGO, or Excel Solver) an IP whose solution will do this. Solucion: Variables de decision: Funcion objetivo: Min Z= S.A. 5
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

Tarea6Eq13 - Problema 1 (extrado del libro de texto,...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online