2009Midterm2_solution

2009Midterm2_solution - "\ _.-'~ II; Ill. z,- \...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: "\ _.-'~ II; Ill. z,- \ .;_ MAE110A Midterm Exam 2, November 23, 2009, 90 minutes open book and calculator only no portable electronic devices, cameras, homeworks, notes, solutions etc 1. (30 points) An air compressor operates at steady state with air entering at p1 = 15 Ibf/inz, T1 = 60°F. The air undergoes a polytropic process and exits at p; = 75 lbf/inz, T2 = 294°F (hint: h; = 180.63 BTU/lb). Assume the ideal gas model for air and neglect changes in kinetic and potential energy. (3) Evaluate the work and heat transfer, each in Btu per lb of air flowing. Hint: the unit conversion factor is 1.986 BTU / (28.97 lb °R) (b) Qualitatively, sketch the process on p-v and T-s diagrams and associate areas on the diagrams with work and heat transfer, respectively. 2. (50 points) Consider a Carnot vapor power cycle. Saturated liquid water enters the boiler at a pressure of 10 MPa, and saturated water vapor enters the turbine. The condenser pressure is 6 kPa. Hint: Do not interpolate tables, but choose closest value. Determine 3. Thermal efficiency. b. Would the thermal efficiency of an ideal Rankine cycle at the same pressures be larger or smaller? Why is the Rankine cycle chosen in practice over the Carnot cycle? c. Heat transfer to the working fluid per unit mass passing through the boiler, in kJ/kg. cl. Now consider irreversibilities in the adiabatic expansion and compression processes. If the states at the turbine and pump inlets remain unchanged, repeat a) with _ isentropic efficiencies of fit = 0.80 for the turbine and 1],, = 1 for the pump. 3. (20 points) Air enters an insulated turbine operating at steady state at 6.5 bar, 687°C (hint: h = 1000.55 kJ/kg) and exits at 1 bar, 327°C. Neglecting kinetic and potential energy changes and assuming the ideal gas model, determine a. The work developed in kJ / kg of air flowing through the turbine. b. Whether the expansion is internally reversible, irreversible, or impossible. l r I _g_M/LE. uQA____.E Migicm L 1 $olu-Hov15 "6 iTW’ob'tggn l 5 €50 P+s. J _T\ v _ ' . ‘ A :, 4*» Am wrcasar :5 opera-f1 6d” 'é'hzmly Bi-vdfl ; NHL! 1119.— 3ivm Eqkf v- ouHa Vajws: (D . I"~ @1210" ‘ 'P.= is 1LVa“: 'Pb=‘76 "fir w ‘ 112,- (smswflh 1' z | T,=Lpo'r-' ; 71,: L‘W'F | “‘5 fid—prms ;: “Poly-Hap; => Pvn“: Cami? 593,1‘NodgL: 5) 435%“, (1-5“ 33 M ‘id-EAI 0G b) “rm—“Prams: is ad— 51’1541 88ft“. a) Negkcf "PE-1be e. c‘fs i £95555 : APPN'VQ fie. 5.1243, b-qulm: I ' . L . g :3}? = Q - w + :mm 32537;) — can»: (h+%+3%3 +2. ‘ kfldwifls afg=o gmflia fiat!“ wk! =n5L:M 5mg! flu . EB Earn-LES “(1:35 , ’ o= rig—{N +n31(‘).—lnz,)=—7 g, = 13% + (aghb + hi can be (warm; Wflscz 4.72213: la. 2/3427 BTU/rs 63 work M b: dd-cr-ur'hei “FEM: - +2 %=:_flffl U; are. “n” OLA bu oLd-uminei 'FIUM‘ ! n_’ i - -1 1 P1”: Cong'f' => l :3 a) r175" } I PI 5207/ ‘6' i lo (L95) n-t ' .:> _3___ = .._._ => : ' +3 ‘- post 5 ) n _.__L: O , 1:1 I _ (/.5)K(1::n\ h um vuiaggkwe I) H "a (.5 —( h" 3 2,23%? / - W 3% (ED : 60—},E‘fl _‘3F_’rc->ble:n_ 2— pesarlemn; A Came-E— \Mkfcr cycle. 3'13: : 10 Ha . PL 9 1: -. (0 LR. Q :5 Sq‘f‘um'kd V010“: Sink ® .‘3 517‘mk1 lifU-‘d- Eng, Mach‘: N0 in. +ulbfnt a! ‘F-lelO. Ne L» ‘,W{[c’_{ 3‘35?- |. 55:1? flIIEiS‘. 6Q Thorn/«Al 5144mm“, 4:" am. Edin‘ cami— cyc‘k mu Enema Y‘ , T 65 "Zal- .7:- => Tar-Twhwwq - 309.3: K "I; Tafflmqg MR3 = 5813.3 K 3°13! 584.13 ») :15?- O.?70Ca. ~ ‘27 2. E? .b.) The, Emma would 9L.mgg._.e£-gegk fiéwc-v/er, :74 ES 007‘ US'QOL 'w- ?m-Ha_. bumme— ?nétu._; chalk. la +Y\[ik3 +- <?u-.P 0L. +£1.10 7545;. Mgr-farm 72mm 1424 CG += flu lower. #50, lass “or? is exfmkol-Homf'mbus-Hon +71 when burnihj fuel in 41M. hmlzr +u vaor.'km wd‘L-(fijflui . C3 To Freed, a" beam fink“! += m mimic; od" each orfi {m 7%- mm mm; = "J .5 - 5.02M V39 A“! 2’7Mé/‘3, I [gilt .'- AIL: I” @ h?" at (P ‘OWKJ :3 I14— /‘707 (1 (“S/é :r? r? 57: 5,5370 '54? K s —sfin M S =- __ 7 s. 3 ® 5 C9. 5 $7 3 fig 55f (u 3 k5: 20277 /6 + ( 1305 5%) To save 42v m 1401+- mmw Myaykm 4%,: Ewing, 1m. 51:.- D I 40 4.0 %r @->/+’fi(afl¥-lfll)+ V‘Th ' _, T/%v_€f‘; 6; 2.. v. . ® :5 53.7.: hl_hf = (5724.7 ~ #31010, &\ fir m '1?=Io t.) hfrl’lfi = Holt; Mia 43* W {WEN-'1 :0'3 a 11.41; '47? 2,721.? - 24.. '5 h h " "uni-:7sz m: mm 921 _$r59e; '3 “H's _ _ mm: 4h “4&1!th forbML exfme war-L. 1%“ air. 421x94:- ?.-—- (9-5 6“ T,= {937 L madam ‘éj; 1):," Adv 55,7 [—1 I ’ I WV.“ .\\ -.'® 533. Mad-9J5 nejud T954 K5 ’(fSSOM-Q «Si—Cad? 4W ES Edm/ S. MJV‘QM {vvbfmfi—‘f‘ a 2'0 C) o figflw “HI-“w WM) 0 0 4» '. 6) _ .U/@ J, M 0 g: {miszm- 2M?) ‘me {In-2,2 8 “f 1 %—=Z42—Z.QL - /n ((75) 8007M Puma"; L7 wrewrsJD/i' E+Z,5 ...
View Full Document

This note was uploaded on 04/09/2012 for the course MAE 110A taught by Professor Stefang.llewellynsmith during the Spring '08 term at UCSD.

Page1 / 6

2009Midterm2_solution - &amp;quot;\ _.-'~ II; Ill. z,- \...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online