HW8 Tips - note that x1 is defined for t≥0 while x2 and...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
3.16 The forcing, F(t), can be expressed as F1(t) + F2(t) , as illustrated bellow. If x1(t) and x2(t) is the response to F1(t) and F2(t), respectively, then the total response, x(t), is  x1(t) + x2(t). Note that x(1) is valid for t≥0 and x2(t) is valid for t≥ . π 3.18 Similarly, F(t) can be expressed as F1(t)-F2(t)+F3(t). If x1(t) , x2(t) and x3(t) are the solutions for  F1(t), F2(t) and F3(t), respectively, then the complete solution, x(t), is x1(t)-x(2)+x3(t).  Again, 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: note that x1 is defined for t≥0 while x2 and x3 are defined for t≥t1. F(t) = Fo sin(t) 0≤t≤ π t f(t) t f(t) F1(t) = Fo sin(t) t≥0 F2(t) = Fo sin(t-) t≥ π π t f(t) F(t) t ≥ Fo t1 t f(t) Fo t1 t f(t) F(t)2 t ≥ t1 F(t)1 t ≥ Fo t1 t f(t) Fo t1 t f(t) F(t)3 t ≥ t1...
View Full Document

This note was uploaded on 04/07/2008 for the course MAE 321 taught by Professor Glauser during the Spring '08 term at Syracuse.

Ask a homework question - tutors are online