Here is the solution in both inequality and interval

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: the sign of the polynomial at that point. This is the step in the process that has all the work, although it isn’t too bad. Here is the number line for this problem. Now, let’s talk about this a little. When we pick test points make sure that you pick easy numbers to work with. So, don’t choose large numbers or fractions unless you are forced to by the problem. Also, note that we plugged the test points into the factored from of the polynomial and all we’re really after here is whether or not the polynomial is positive or negative. Therefore, we didn’t actually bother with values of the polynomial just the sign and we can get that from the product shown. The product of two negatives is a positive, etc. We are now ready for the final step in the process. Step 5 : Write down the answer. Recall that we discussed earlier that if any point from a region satisfied the inequality then ALL points in that region satisfied the inequality and likewise if any point from a region did not satisfy the inequality then NONE of...
View Full Document

This note was uploaded on 06/06/2012 for the course ICT 4 taught by Professor Mrvinh during the Spring '12 term at Hanoi University of Technology.

Ask a homework question - tutors are online