This preview shows page 1. Sign up to view the full content.
Unformatted text preview: ) and notice that this is also an xintercept.
The coefficient of the 4th degree term is positive and so since the degree is even we know that the
polynomial will increase without bound at both ends of the graph.
Finally, here are some function evaluations. P ( 3) = 54 P ( 1) = 4 P (1) = 6 P ( 4 ) = 96 Now, starting at the left end we know that as we make x more and more negative the function
must increase without bound. That means that as we move to the right the graph will actually be
decreasing.
At x = 3 the graph will be decreasing and will continue to decrease when we hit the first xintercept at x = 2 since we know that this xintercept will cross the xaxis.
Next, since the next xintercept is at x = 0 we will have to have a turning point somewhere so
that the graph can increase back up to this xintercept. Again, we won’t worry about where this
turning point actually is.
Once we hit the xintercept at x = 0 we know that we’ve got to have a turning point since this xintercept doesn’t cross the xaxis. Therefore to the right of x = 0 the graph will now be
decreasing.
It will continue to decrease until it hits a...
View
Full
Document
This note was uploaded on 06/06/2012 for the course ICT 4 taught by Professor Mrvinh during the Spring '12 term at Hanoi University of Technology.
 Spring '12
 MrVinh

Click to edit the document details