HKALE Pure Maths 2001 Paper01

# 7 a rotation which rotates any vector anticlockwise

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 + " + 1] or otherwise, show that (1 + u ) n ≥ 1 + nu (1 + u ) n −1 2 and the equality holds if and only if u = 0 . (3 marks) END OF PAPER 2001-AL-P MATH 1−11 − 10 − 2001 Paper 1 Section A 1. (a) 1 2 1 −+ x−2 x x+2 2. (b) n(n + 1)(n + 2) 4. (a) bci + acj + abk 5. (a) 1 ≤ k ≤ 2n + 1 4 (b) 30 T8 = C 7 1 3 (a) 1 − 1 1 1 (b) λ= 2 7. 7 A rotation which rotates any vector anticlockwise through about the origin, followed by an enlargement with factor π 4 2. 2001 Paper 1 Section A 8. (a) Imaginary L 4 + 4i Real O (b) PQ = 2 2 − 1 The complex number representing Q is 1+ i 2 . 2001 Paper 1 Section B 9. (a) Let ∆ be the determinant of the coefficients of (S). 1λ1 ∆= λ −1 1 3 1 2 = − 2 + 3λ + λ + 3 − 1 − 2λ 2 = −2 λ (λ − 2 ) (S) has a unique solution iff iff (b) (i) ∆≠0 λ ≠ 0 and λ ≠ 2 When λ ≠ 0 and λ ≠ 2 , (S) is consistent for all values of k , kλ1 1 x= y= −1 1 −1 1 2 ∆x 3(λ + k ) − 2 k − λ + 1 − 1 − k − 2λ = = =− − 2λ (λ − 2) ∆ − 2λ ( λ − 2) 2 λ (λ − 2 ) ∆y ∆ = 1k1 λ11 3 −1 2 − 2λ (λ − 2) λk λ −1 1 3 1 −1 = 2 + 3k − λ − 3 + 1 − 2λk 2λk + λ − 3k = − 2λ (λ − 2) 2λ ( λ − 2) 1 z= ∆z 1 + 3λ + λk + 3k − 1 + λ 2 (λ + 3)(λ + k ) = = = ∆ − 2λ (λ − 2) − 2λ (λ − 2) − 2λ (λ − 2) 2001 Paper 1 Section B (ii) When λ = 0 , the augmented matrix of (S) becomes k 1 0 1 k 1 0 1 0 −1 1 1 ~ 0 −1 1 1 3 1 2 − 1 0 0 0 − 3k ∴ (S) is consistent iff k = 0 . x + z = 0 . When λ = 0 and k = 0 , − y + z = 1 S.S. of (S) = { (t , − (t + 1), − t ) : t∈R } (iii) When λ = 2 , the augmented matrix of (S) becomes k 1 2 1 k 1 2 1 ~ 2 −1 1 1 0 5 1 2k − 1 3 1 2 − 1 0 0 0 − k − 2 ∴ (S) is consistent iff k = −2 . x + 2 y + z = −2 When λ = 2 and k = −2 , . 5 y + z = −5 S.S. of (S) = (c) { (3(1 + t ), t , − 5(1 + t ) ): t∈R } The system of equations is (S) when λ = 0 and k = 0 . If some solution (t , − (t + 1), − t ) sati...
View Full Document

## This note was uploaded on 06/07/2012 for the course MATHS 2002 taught by Professor Lo during the Fall '02 term at Wisc Oshkosh.

Ask a homework question - tutors are online