SPC_v13 - Chapter 16 Cluster Analysis Identifying groups of individuals or objects that are similar to each other but different from individuals in

SPC_v13 - Chapter 16 Cluster Analysis Identifying groups of...

This preview shows page 1 - 3 out of 32 pages.

361 Chapter 16 Cluster Analysis Identifying groups of individuals or objects that are similar to each other but different from individuals in other groups can be intellectually satisfying, profitable, or sometimes both. Using your customer base, you may be able to form clusters of customers who have similar buying habits or demographics. You can take advantage of these similarities to target offers to subgroups that are most likely to be receptive to them. Based on scores on psychological inventories, you can cluster patients into subgroups that have similar response patterns. This may help you in targeting appropriate treatment and studying typologies of diseases. By analyzing the mineral contents of excavated materials, you can study their origins and spread. Tip: Although both cluster analysis and discriminant analysis classify objects (or cases) into categories, discriminant analysis requires you to know group membership for the cases used to derive the classification rule. The goal of cluster analysis is to identify the actual groups. For example, if you are interested in distinguishing between several disease groups using discriminant analysis, cases with known diagnoses must be available. Based on these cases, you derive a rule for classifying undiagnosed patients. In cluster analysis, you don’t know who or what belongs in which group. You often don’t even know the number of groups. Examples You need to identify people with similar patterns of past purchases so that you can tailor your marketing strategies.
Image of page 1
362 Chapter 16 You’ve been assigned to group television shows into homogeneous categories based on viewer characteristics. This can be used for market segmentation. You want to cluster skulls excavated from archaeological digs into the civilizations from which they originated. Various measurements of the skulls are available. You’re trying to examine patients with a diagnosis of depression to determine if distinct subgroups can be identified, based on a symptom checklist and results from psychological tests. In a Nutshell You start out with a number of cases and want to subdivide them into homogeneous groups. First, you choose the variables on which you want the groups to be similar. Next, you must decide whether to standardize the variables in some way so that they all contribute equally to the distance or similarity between cases. Finally, you have to decide which clustering procedure to use, based on the number of cases and types of variables that you want to use for forming clusters. For hierarchical clustering, you choose a statistic that quantifies how far apart (or similar) two cases are. Then you select a method for forming the groups. Because you can have as many clusters as you do cases (not a useful solution!), your last step is to determine how many clusters you need to represent your data. You do this by looking at how similar clusters are when you create additional clusters or collapse existing ones.
Image of page 2
Image of page 3

You've reached the end of your free preview.

Want to read all 32 pages?

  • Spring '12
  • rtgg
  • Spss, Distance

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes