nguyen (kdn444) – Assignment 8 – guntel – (55200)200410.0pointsDetermine if the improper integralI=integraldisplay-5-∞1√4−vdvis convergent or divergent, and if convergent,find its value.1.I= 32.I= 63.I=924.I=325.Iis divergentcorrectExplanation:The integral is improper because of the in-finite interval of integration. It will convergeiflimt→ ∞integraldisplay-5-t1√4−vdvexists. Nowintegraldisplay-5-t1√4−vdv=bracketleftBig−2√4−vbracketrightBig-5-t=−6 + 2√4 +t .But we know thatlimt→ ∞√4 +t=∞.Consequently,Iis divergent.00510.0pointsDetermine if the improper integralI=integraldisplay∞e1x(ln 4x)2dxconverges, and if it does, compute its value.1.Idoes not converge2.I=4ln 4e3.I= ln 4e4.I= 45.I=1ln 4ecorrect6.I=14eExplanation:The integral is improper because of the in-finite interval of integration, so we writeI=limt→ ∞It,It=integraldisplayte1x(ln 4x)2dx,whenever the limit exists. To evaluateIt, firstsetu= ln 4x. Thenintegraldisplay1x(ln 4x)2dx=integraldisplay1u2du=−1u+C ,and soIt=bracketleftBig−1ln 4xbracketrightBigte=parenleftBig1ln 4e−1ln 4tparenrightBig.On the other hand,limt→ ∞1ln 4t= 0.Consequently, limt→ ∞Itexists, andI=limt→ ∞parenleftBig1ln 4e−1ln 4tparenrightBig=1ln 4e.00610.0pointsDetermine if the improper integralI=integraldisplay∞12 tan-1x1 +x2dxconverges, and if it does, find its value.