{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Hyperbolas - Kuta Software Infinite Algebra 2 Name Graphing...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Kuta Software - Infinite Algebra 2 Name___________________________________ Period____ Date________________ Graphing and Properties of Hyperbolas Identify the vertices, foci, and direction of opening of each. 1) x 2 81 - y 2 4 = 1 2) x 2 121 - y 2 81 = 1 3) y 2 25 - x 2 16 = 1 4) x 2 121 - y 2 36 = 1 5) ( x + 2 ) 2 169 - ( y + 8 ) 2 4 = 1 6) ( y + 8 ) 2 36 - ( x + 2 ) 2 25 = 1 Identify the vertices and foci of each. Then sketch the graph. 7) x 2 20 - ( y + 1 ) 2 10 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 8) ( x - 3 ) 2 4 - ( y + 1 ) 2 9 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 9) ( y - 1 ) 2 9 - ( x + 1 ) 2 16 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 10) y 2 9 - ( x - 2 ) 2 9 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 -1-
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
11) y 2 25 - x 2 25 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 12) x 2 25 - ( y - 2 ) 2 4 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 13) ( x - 1 ) 2 4 - ( y - 3 ) 2 4 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 14) y 2 9 - x 2 25 = 1 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 Identify the asymptotes, length of the transverse axis, length of the conjugate axis, length of the latus rectum, and eccentricity of each. 15) -10 y - y 2 = -4 x 2 - 72 x - 199 16) - y 2 + 12 y - 19 = 18 x - x 2 -2-
Background image of page 2
Kuta Software - Infinite Algebra 2 Name___________________________________ Period____ Date________________
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}