dict1_ΛΕΞΙΚΟ

Actual error pragmatik sf lma a posteriori error

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: anwmal a ousi dec an malo shme o. essential supremum: ousi dec supremum. essential upper bound: ousi dec nw fr gma. 109 essentially: ousiwd c, ousiastik . essentially bounded: ousiwd c fragm noc. essentially bounded above: ousiwd c nw fragm noc. essentially bounded below: ousiwd c k tw fragm noc. essentially complete: ousiwd c pl rhc. estimable: ektim simoc. estimate: ekt mhsh, ektim , upolog zw. biased estimate: mh amer lhpth ekt mhsh. error estimate: ekt mhsh sf lmatoc. point estimate: shmeiak ekt mhsh. rough estimate: pr qeirh ekt mhsh. sharp estimate: oxe a ekt mhsh. standard error of estimate: tupik sf lma ektim unbiased estimate: amer lhpth ekt mhsh. sewc. estimation: ekt mhsh. estimation theory: ektimhtik jewr a ektim sewc. a posteriori error estimation: a posteriori ekt mhsh sf estimator: ektim lmatoc. tria, ektimht c. absolutely unbiased estimator: apol twc amer lhpth ektim tria. Bayes estimator: ektim tria Bayes. best estimator: b ltisth ektim tria. biased estimator: mh amer lhpth ektim tria. maximum likelihood estimator: ektim tria m gisthc pijanof neiac. non-regular estimator: mh kanonik ektim tria. point estimator: shmeiak ektim tria. Se merik bibl a, shmeioektim point estimator: shmeiak ektim tria. quadratic estimator: tetragwnik ektim tria. ratio estimator: ektim tria l gou. regular estimator: kanonik ektim tria. strongly consistent estimator: isqur sunep c ektim tria. unbiased estimator: amer lhpth ektim tria. tria Euclidean: eukle deioc, o tou Eukle dh. Euclidean algorithm: eukle deioc alg rijmoc. Euclidean geometry: eukle deia gewmetr a. Euclidean norm: eukle deia n rma. Euclidean ring: eukle deioc dakt lioc. Euclidean space: eukle deioc q roc. Euler, Leonhard (1707-1783) Euler characteristic: qarakthristik tou Euler. Euler's constant: stajer tou Euler. Euler equations: exis seic Euler. Euler's identities: taut thtec tou Euler. Euler-Maclaurin summation formula: t poc jroishc twn Euler-Maclaurin. 110 shmeioektimht c. Euler numbers: arijmo tou Euler. Euler's theorem: je rhma tou Euler. Eulerian: tou Euler. Eulerian approach: je rhsh kat Euler. evaluate: upolog zw, ektim . evaluation: upologism c, ekt mhsh. evaporation: ex tmish. even: rtioc, zug c. even extension: rtia ep ktash. even function: rtia sun rthsh. even number: rtioc arijm c. even parity: rtia isotim a. even permutation: rtia met jesh. evenly: omoi morfa, omal , ex sou. omoi morfa topojethm noi. evenly spaced: event: gegon c, endeq meno. certain event: b baio gegon c endeq meno. composite event: s njeto gegon c endeq meno. compound event: s njeto gegon c endeq meno. dependent events: exarthm na gegon ta endeq mena. elementary event: stoiqei dec gegon c endeq meno. impossible event: ad nato gegon c endeq meno. independent events: anex rthta gegon ta endeq mena. mutually exclusive events: asumb basta gegon ta endeq random event: tuqa o endeq meno. rare event: sp nio gegon c endeq meno. simple event: apl stoiqei dec gegon c endeq meno. sure event: b baio gegon c endeq meno. every: k je. everywhere: panto almost ev...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online