dict1_&Icirc;›&Icirc;•&Icirc;ž&Icirc;™&Icirc;š&Icirc;Ÿ

# Base kai basis basic basik c basic frame basik pla

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sic frame: basik pla sio. basic framing: basik plais wsh. basic machine: basik mhqan . basic principles: basik c arq c, axi basic research: basik reuna. mata (axioms). 26 basic sequence: basik akolouj a. unconditional basic sequence: ad smeuth basik basis (pl. bases): b akolouj a. sh. basis function: sun rthsh b shc. basis vector: di nsuma b shc. bicubic basis functions: dikubik c sunart seic b shc. bilinear basis functions: digrammik c sunart seic b shc. biquadratic basis functions: ditetragwnik c sunart seic b shc. change of basis matrix: p nakac allag c b shc p nakac met bashc (transition matrix). cubic basis functions: kubik c sunart seic b shc. global basis functions: kajolik c sunart seic b shc. involutive basis: eneliktik b sh. linear basis functions: grammik c sunart seic b shc. local basis functions: topik c sunart seic b shc. minimal basis: elaqistotik b sh. ordered basis: diatetagm nh b sh. oriented basis: prosanatolism nh b sh. orthogonal basis: orjog nia b sh. orthonormal basis: orjokanonik b sh. quadratic basis functions: tetragwnik c sunart seic b shc. standard basis: sun jhc b sh, kanonik b sh, kajierwm nh b sh. transcendence basis: uperbatik b sh. unconditional basis: ad smeuth b sh. batch: part da. battery: sustoiq a. Bayes, (-) Bayes' estimation: ekt mhsh Bayes. Bayes estimator: ektim tria Bayes. Bayes' postulate: a thma Bayes. Bayes' risk: diakind neush Bayes. Bayes' theorem or rule: je rhma t Bayesian: mpe poc tou Bayes. zian c, tou Bayes. mpe zian diast mata. Bayesian intervals: beam: dok c, r bdoc, d smh (aktinobol ac). c. elastic beam: elastik dok light beam: d smh fwt c. beat: diakr thma, sumbol (optik ). suqn thta diakrot matoc. beat frequency: beating: sumbol (optik before: prin. behavior: sumperifor . asymptotic behavior: ). asumptwtik sumperifor . 27 chaotic behavior: qaotik sumperifor . inductive behavior: epagwgik sumperifor periodic behavior: periodik sumperifor . . behavioral: sumperiforik c. Bei functions: sunart seic Bei. bell: k dwnac. bell-shaped: below: k kwdwnoeid c. tw. bounded below: k tw fragm noc. essentially bounded below: ousiwd Beltrami-Enneper formula: t benchmark: shme o anafor c. benchmark problem: pr bend: k mptw, k myh. bend point: shme o an bending: k c k tw fragm noc. poc twn Beltrami-Enneper. blhma anafor c. kamyhc. myh, k rtwsh (optik ). myhc. bending invariant: anallo wth k bending moment: rop k myhc. Ber functions: sunart seic Ber. Bergman kernel: pur nac Bergman. Bernoulli, (-) Bernoulli distribution: katanom tou Bernoulli Bernoulli's inequality: anis thta tou Bernoulli. Bernoulli numbers: arijmo tou Bernoulli. Bernoulli trial: dokim Bernoulli. diwnumik (binomial) katanom . Bertrand curve: kamp lh tou Berdrand. Bessel, F.W. (1784-1846). Bessel functions: sunart seic Bessel. Bessel's di erential equation: diaforik ex swsh tou Bessel. Bessel's modi ed di erential equation: tropopoihm nh diaforik Bessel's inequality: anis thta tou Bessel. modi ed Bessel functions: tropopoihm nec sunart seic Bessel. best: b ltistoc. best...
View Full Document

## This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online