Bounded occurrence desmeum nh emf nish free

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: aforik c telest c. Hermitian operator: ermitian c telest c. identity operator: tautotik c telest c. interpolation operator: telest c parembol c. inverse operator: ant strofoc telest c. iteration operator: telest c epan lhyhc. linear operator: grammik c telest c. Laplace operator: telest c tou Laplace, laplasian c telest c, laplasian . non-singular operator: mh idi zwn omal c telest c. normal operator: k jetoc telest c. partial di erential operator: merik c diaforik c telest c telest c me merik c parag positive de nite operator: jetik orism noc telest c. projection operator: telest c probol c. pseudoinverse operator: yeudoant strofoc telest c. self-adjoint operator: autoprosarthm noc autosuzug c telest c. singular operator: idi zwn telest c. Sturm-Liouville operator: telest c Sturm-Liouville. symmetric operator: summetrik c telest c. wave operator: kumatik c telest c. opposite: ant jetoc, ap nanti. opposite angles: kat koruf gwn ec. opposite category: ant jeth du k (dual) kathgor a. opposite elements: ant jeta stoiqe a. 231 gouc. opposite numbers: ant jetoi arijmo . opposite (binary) operation: ant jeth (dimel c) pr xh. opposite ring: ant jetoc dakt lioc. opposite side (to an angle): ap nanti pleur (se gwn a trig opposite sides: ap nanti pleur c. opposite vectors: ant jeta dian smata. opposition: ant jesh, antizug a. optic: optik c. optic axis: optik c xonac. optical: optik c. optical eld: optik ped o. optical path: optik c dr moc. optical path length: m koc optiko optics: optik . ber optics: optik geometrical optics: dr mou. twn inwd n agwg n. gewmetrik optik . optima: bl. optimum. optimal: b ltistoc. optimal control: b ltistoc legqoc. optimal property: b ltisth idi thta. optimality: beltist thta. optimistic: aisi doxoc, optimistik c. optimization: beltistopo hsh, aristopo hsh. optimization problem: pr blhma beltistopo hshc. optimization technique: m jodoc beltistopo hshc. adaptive optimization: anaprosarmostik beltistopo hsh. combinatorial optimization: sunduastik beltistopo hsh. convex optimization: kurt beltistopo hsh. equilibrium optimization: beltistopo hsh isorrop ac. global optimization: kajolik beltistopo hsh. linear optimization: grammik beltistopo hsh. multi-level optimization: mh grammik beltistopo hsh. non-linear optimization: mh grammik beltistopo hsh. stochastic optimization: stoqastik beltistopo hsh. structural optimization: domik beltistopo hsh. optimize: beltistopoi , aristopoi . optimizer: beltistopoiht c. optimum (pl. optima): b ltistoc, ristoc, b ltisth tim option: epilog , proa resh. optional: proairetik c. 232 . nou). orbit: troqi . orbital: troqiak c, planhtik order: t xh, di taxh. c. ascending order: anio sa t xh. continuity order: t xh sun qeiac. convergence order: t xh sugklishc. descending order: katio sa t xh. rst order: pr th t xh. rst-order di erential equation: diaforik ex swsh pr thc t xhc. higher order terms: roi an terhc t xhc. inverse order: ant strofh di taxh. lexicographic order: lexikografik alfabhtik di taxh. natural order:...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online