dict1_&Icirc;›&Icirc;•&Icirc;ž&Icirc;™&Icirc;š&Icirc;Ÿ

# Circular motion kuklik k nhsh constrained motion

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: t multiply: 1. pollaplasi Lagrange. zw. 2. pollapl . multiply connected: pollapl sunektik c. multiply connected region: pollapl sunektik multipolar: polupolik multipole: pol polo. n tou qwr o t poc. c. multipole equation: polupolik ex swsh. multipole expansion: polupolik an ptugma. multipole method: polupolik m jodoc. multiscale: pollapl kl maka. multiscale analysis: an lush pollapl c kl makac (sun. multiple scale analysis). multiscale phenomena: fain mena pollapl c kl makac. multiset: polus nolo. multi-stage: polustadiak c. multi-stage integration method: polustadiak m jodoc olokl multi-stage sampling: polustadiak deigmatolhy a. multi-step: polubhmatik c, poll n bhm twn. m jodoc. multi-step method: polubhmatik multi-temporal: poluqronik c. multi-temporal model: poluqronik multitude: pl joc. multivalent: polud namoc, polusjen multi-valued: plei timoc. mont lo. multi-valued decision: ap fash poll multi-valued function: plei timh sun multi-valued logic: plei timh logik . c. n epilog n. rthsh. 213 rwshc. multivariate: polumetablht c, poludi statoc. multivariate analysis: polumetablht an lush. multivariate distribution: polumetablht katanom . multivariate inequality: polumetablht anis thta. multivariate moment: polumetablht mikt rop . multivariate process: polumetablht an lixh. multivariate quality control: polumetablht c legqoc poi thtac. multivector: poludi nusma. musical: mousik c. musical note: mousik c t noc. mutable: metablht c. mutate: metab llw. mutatis mutandis: throum nwn twn analogi mute: boub c. mutual: amoiba oc. mutually: amoiba a. n (lat.). mutually exclusive events: asumb basta gegon mutually exclusive sets: x na s nola. mutually perpendicular: metax touc k jetoi. ta endeq mena. N nabla: an delta (telest nadir: nad r. naive: aplo k c. naked: gumn c. naked singularity: gumn c), sun. del. anwmal a. Napier, J. (1550-1617). Napierian: nep reioc, o tou Napier. Napierian logarithms: fusiko log rijmoi, nep reioi log rijmoi. Napierian system of logarithms: logarijmik s sthma tou Napier. narrow: sten c. narrowly: sten . narrowly appropriate structure: sten kat llhlh dom . 214 natural: fusik c. natural base of logarithms: fusik b sh twn logar jmwn. natural boundary: fusik s noro. natural boundary condition: fusik sunoriak sunj kh (sunj kh Neumann). natural embedding: fusik emf teush. natural equations: fusik c exis seic. natural equivalence: fusik isodunam a, fusik c isomorfism c. natural frequency: fusik suqn thta. natural isomorphism: fusik c isomorfism c. natural language: fusik gl ssa. natural logarithm: fusik c log rijmoc. natural norm: fusik n rma. natural number: fusik c arijm c. natural order: fusik di taxh. natural parameter: fusik par metroc. natural spline: fusik (sun rthsh) spline. natural transformation: fusik apeik nish metasqhmatism c. nature: f sh. non-linear nature: mh grammik f sh, mh grammik c qarakt rac. naught: mhd n (sun. zero kai nought). nautical: anutik c. nautical mile: nautik near: plhs on, kont m li. , sqed n, kontin c. near...
View Full Document

## This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online