Combinatorial optimization sunduastik beltistopo hsh

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: oin c diair thc. highest common factor: m gistoc koin c par gontac ( lowest common divisor: el qistoc koin c diair thc. communication: epikoinwn a. diair thc). broadband communication: epikoinwn a eure ac z nhc. data communication networks: d ktua epikoinwn ac dedom nwn. 50 n. lec. commutation: antimet jesh. commutative: antimetajetik c, metajetik c. commutative algebra: antimetajetik lgebra. commutative diagram: antimetajetik di gramma. commutative group: antimetajetik abelian om da. commutative law: antimetajetik idi thta. commutative matrices: antimetajetiko antimetaj simoi p nakec. commutative module: antimetajetik metabatik pr tupo. commutative ring: antimetajetik c dakt lioc. general commutative law: genik antimetajetik idi thta. commutativity: antimetajetik thta. commutator: antimetaj thc. commute: antimetat jemai. commuting: antimetajetik c, antimetaj simoc. commuting matrices: antimetajetiko antimetaj simoi p nakec. commuting polynomials: antimetajetik antimetaj sima polu numa. compact: sumpag c. compact manifold: sumpag c pollapl thta. compact set: sumpag c s nolo. compact space: sumpag c q roc. compact subset: sumpag c upos nolo. compact support: sumpag c for ac. compact surface: sumpag c epif neia. countably compact: arijm sima sumpag c. locally compact: topik sumpag c. sequentially compact: akoloujiak sumpag c. compacti cation: sumpagopo hsh. one-point compacti cation: sumpagopo hsh en compactly: sumpag c. compactly supported function: sun weakly-compactly generated (wcg): compactness: sump c shme ou. rthsh me sumpag for a. asjen c-sumpag c parag menoc (gia s nola). geia, to sumpag c, se merik bibl a sumpag thta. rhma sump geiac. compactness theorem: je compacta: bl. compactum. compactum (pl. compacta): sumpag comparability: sugkrisim thta. time comparability: qronik c kai metrikopoi simoc q roc (compact sugkrisim thta. comparable: sugkr simoc. comparable functions: sugkr simec sunart seic. 51 and metrizable). compare: sugkr nw. comparison: s gkrish. comparison property: idi thta thc sugkr sewc. comparison test: krit rio thc sugkr sewc. triple comparisons: tripl c sugkr seic. compass: 1. pux da (mariner's compass). 2. diab thc (pio sunhjism no ston plhjuntik , compasses). me kan na kai diab th. construction with straight-edge and compass: kataskeu compatibility: sumbibast thta, sumbat thta (sun. consistency). kh sumbibast thtac. seic sumbibast thtac. compatibility condition: sunj compatibility equations: exis compatible: sumbibast c, sumbat c. c metab seic. compatible transitions: sumbat compensate: antistajm zw. compensator: antistajmist c. competition: antagwnism c, diagwnism competitive: antagwnistik c. compiler: metaglwttist c. complement: sumpl rwma. c. complement of an angle: sumpl rwma gwn ac. complement of a set: sumpl rwma sun lou. orthogonal complement: orjog nio sumpl rwma. complementarity: sumplhrwmatik linear complementarity: grammik complementary: sumplhrwmatik thta. sumplhrwmatik thta. c. complementary angles: sumplhrwmatik c...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online