Global property kajolik idi thta global solution

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: : sqed ash. grating: fr gma, kigkl dwma. gravitation: bar thta. universal law of gravitation: n gravitational: barutik moc thc pagk smiac lxhc. c, thc bar thtac. gravitational acceleration: epit qunsh thc bar thtac. gravitational collapse: barutik kat rreush. gravitational constant: (pagk smia) stajer thc bar thtac. gravitational eld: ped o bar thtac, barutik ped o. gravitational potential: dunamik bar thtac barutik dunamik gravitational wave: barutik k ma. gravity: bar thta. center of gravity: k ntro b speci c gravity: eidik bar rouc. thta. great: meg loc. greater: megal teroc. greatest: m gistoc. greatest common divisor: m gistoc koin c diair thc. greatest limit: m gisto rio. greatest lower bound: m gisto k tw fr gma in mum. Green, George (1793-1841) Green's formula: t poc tou Green. Green's function: sun rthsh tou Green. Green's identity: taut thta tou Green. Green's theorem: je rhma tou Green. grid: pl gma, esq ra. grid generation: paragwg pl gmatoc. grid size: pl toc pl gmatoc. collocated grid: taxijethm no pl gma. conforming grid: summorfik pl gma. equispaced grid: omoi morfo pl gma (sun. uniform grid). moving grid algorithm: alg rijmoc kino menou pl gmatoc. orthogonal grid: orjog nio pl gma. staggered grid: enallass meno pl gma. uniform grid: omoi morfo pl gma. gross: qondrik c, olik c, ak ground: dafoc, b sh. ground clause: groundless: ab jartoc. basik sunj kh. simoc. 143 . group: om da. group cohomology: sunomolog a om dwn. group divisible: diairet c kat om dec. group isomorphism: isomorfism c om dwn. group representation: anapar stash om dac. group theory: jewr a om dwn. group unit: mon da om dac. Abelian group: abelian antimetajetik om da. additive group: prosjetik om da. a ne group: susqetism nh om da. alternating group: enall ssousa om da. commutative group: antimetajetik abelian om da. conformal group: s mmorfh om da. control group: om da el gqou. cyclic group: kuklik om da. defect group: ellip c om da. dihedral group: diedrik om da. nite group: peperasm nh om da. nite abelian group: peperasm nh abelian antimetajetik free group: ele jerh om da. fundamental group: basik om da. general linear group: genik grammik om da. holonomy group: ol nomh om da. homology group: omologiak om da. homotopy group: omotopik om da. isotropic group: is troph om da. Lie group: om da Lie. linear group: grammik om da. metabelian group: metabelian om da. metacyclic group: metakuklik om da. multiplicative group: pollaplasiastik om da. nilpotent group: mhdenod namh om da. normal group: kanonik om da. paracompact group: par kurth om da. permutation group: om da met jeshc. projective group: probolik om da. semisimple group: hmiapl om da. solvable group: epil simh om da. subnormal group: upokanonik om da. symmetric group: summetrik om da. symmetry group: om da summetri n. topological group: topologik om da. unitary group: monadia a om da. growth: a xhsh, an ptuxh. growth factor: suntelest c a xhshc. rate of growth: rujm c a xhshc an ptuxhc. exponential growth: ekjetik a xhsh. linear growth: g...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online