dict1_ΛΕΞΙΚΟ

Homothety omoiojes a se merik bibl a omojes a

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: permetrik c. hypernormal: uperkanonik c. hypernormality: uperkanonik thta. hyperparallel: uperpar llhloc. 153 . hyperplane: uperep pedo. supporting hyperplane: f ron uperep pedo. hyper-Poisson: uper-Poisson. hyper-Poisson distribution: uper-Poisson katanom hyper-real: uperpragmatik c. hypersingular: uperidi zwn, uperidi hypersingular integral: hypersingular equations: uperidi zousec exis seic. uperidi zon olokl rwma. hyperspace: uperq roc. hypersphere: upersfa ra. hyperspherical: upersfairik hypersurface: uperepif neia. hypervolume: uper gkoc. hypo-: upo-. hypocycloid: upokukloeid c. hypoelliptic: upoelleiptik c. hypoelliptic: morfoc. . c. upoelleiptik c telest c. hypoellipticity: upoelleiptik thta. upoelleiptik thta. analytic hypoellipticity: analutik hypotenuse: upote nousa. hypothesis: up jesh. hypothesis testing: legqoc up jeshc. admissible hypothesis: apodekt up jesh. alternative hypothesis: enallaktik up jesh. composite hypothesis: s njeth up jesh. continuum hypothesis: up jesh tou suneqo c m induction hypothesis: epagwgik up jesh. non-null hypothesis: mh mhdenik up jesh. null hypothesis: mhdenik up jesh. one-sided hypothesis: mon pleurh up jesh. simple hypothesis: apl up jesh. statistical hypothesis: statistik up jesh. test of hypothesis: legqoc up jeshc. two-sided hypothesis: amf pleurh up jesh. working hypothesis: up jesh ergas ac. hypothesize: upoj tw. hypothetic(-al): upojetik c. hypothetical statement: upojetik hypotrochoid: upotroqoeid sou. pr tash (sun. conditional statement). c. 154 hypsometric(-al): uyometrik hypsometry: uyometr a. hysteretic: usterhtik c. hysteresis: ust rhsh. hysteresis loop: br c. qoc uster sewc. I IBVP (initial boundary value problem): pr blhma arqik n sunoriak IDE (integrodi erential equation): oloklhrwtikodiaforik ex swsh. i.e.: dhlad , dhl.. I/O (input/output): e sodoc/ xodoc (plhroforik ). parallel I/O: par n tim n. llhlh e sodoc/ xodoc. IVP (initial value problem): pr blhma arqik n tim n. icosagon: eikos gwno. icosahedral: eikos edroc, eikosaedrik c. icosahedron (pl. icosahedrons or icosahedra): eikos edro. great icosahedron: meg lo eikos edro. regular icosahedron: kanonik omal eikos edro. truncated icosahedron: apokomm no k louro eikos drec tou e nai kanonik pent gwna kai ex gwna). edro. 'Ena ek twn 13 arqim deiwn polu drwn (oi icosidodecaedron (pl. icosidodecahedrons or icosidodecahedra): eikosidwdek edro. 'Ena ek twn 13 arqim deiwn polu drwn (oi drec tou e nai kanonik tr gwna kai pent gwna). truncated icosidodecahedron: apokomm no k louro eikosidwdek edro. Rombik arqim deio pol edro (oi drec tou e nai tetr gwna kai kanonik ex gwna kai dek gwna). ideal: ide dec, idanik c. ideal uid: idanik reust . ideal gas: idanik a rio. left ideal: arister ide dec. maximal ideal: megistotik ide dec. polynomial ideal: poluwnumik ide dec. prime ideal: pr to ide dec. principal ideal: k rio prwte on ide dec. proper ideal: gn sio ide dec. right ideal: dexi ide dec. trivial ideal: tetrimm no ide dec. 155 two-sided ideal: amf pleuro zero ideal: mhdenik i...
View Full Document

Ask a homework question - tutors are online