Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y: epag induction: epagwg menh ast jeia. . induction hypothesis: epagwgik up jesh. induction step: epagwgik b ma. magnetic induction: magnhtik epagwg . mathematical induction: majhmatik epagwg . proof by induction: ap deixh me th m jodo thc epagwg trans nite induction: uperpeperasm nh epagwg . inductive: epagwgik c. inductive behavior: epagwgik c. sumperifor . inductively: epagwgik . industrial: biomhqanik c. industry: biomhqan a. ine ciency: anapotelesmatik thta. ine cient: mh apotelesmatik c, anapotelesmatik ine cient statistic: inelastic: plastik c, mh apodotik c. mh apotelesmatik statistik sun rthsh. c, mh elastik c, anelastik c. kro sh. inelastic collision: plastik inelasticity: plastik thta, anelastik inequality: anis thta. thta. absolute inequality: ap luth anis thta. Bernoulli's inequality: anis thta tou Bernoulli. Bessel's inequality: anis thta tou Bessel. Cauchy's inequality: anis thta tou Cauchy. Cauchy-Schwarz inequality: anis thta twn Cauchy-Schwarz. isoperimetric inequality: isoperimetrik anis thta. multivariate inequality: polumetablht anis thta. strict inequality: gn sia anis thta. triangle inequality: trigwnik anis thta. inequivalence: anisodunam a. a ne inequivalence: susqetism nh anisodunam a. inequivalency: anisodunam a. inequivalent: anisod namoc. a ne inequivalent: susqetism noc anisod namoc. 162 inertia: adr neia. ellipsoid of inertia: elleiyoeid c adr neiac. law of inertia: n moc thc adr neiac. moment of inertia: rop adr neiac. principal axes of inertia: k rioi xonec adr neiac. principal moments of inertia: k riec rop c adr neiac. product of inertia: gin meno adr neiac. inertial: adraneiak c, thc adr neiac. adraneiak s sthma suntetagm nwn. s sthma. roi roi adr neiac. inertial frame of reference: inertial system: adraneiak inertial terms: adraneiako inertialess: qwr c adr neia. inexact: mh akrib c, anakrib inexact method: mh akrib c, esfalm noc. c m jodoc. inexactitude: anakr beia. infer: sumpera nw, sun gw. inference: sump rasma, exagwg sumper smatoc, sumperasmatolog a. adaptive inference: anaprosarmostik sumperasmatolog a. by inference: sumperasmatik , sumperasmatologik , kat sumperasm . ducial inference: pisteutik sumperasmatolog a. rule of inference: sumperasmatologik c kan nac, kan nac paragwg c (sun. rule of deduction). statistical inference: statistik sumperasmatolog a. inferential: sumperasmatik inferior: kat teroc. inferior limit: kat c. tero rio m gisto k tw rio. in mum: in mum, m gisto k essential in mum: ousi in nite: in in in in in in in in in in in in in dec tw fr gma in mum. p rac (greatest peiroc, at rmwn. nite class: peirh kl sh. nite dimension: peirh di stash. nite dimensional: apeirodi statoc, peirhc di stashc. nite divisibility: peirh diairet thta. nite elements: peira (peperasm na) stoiqe a. nite extension: peirh ep ktash. nite jump: peiro p dhma. nite loop: peiroc at rmonac br qoc. nite ordinal: peiroc diataktik c (arijm c). nite population: peiroc plhjusm c. nite product: peiro gin meno apeirogin meno. nite quanti er: peiro...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online