dict1_ΛΕΞΙΚΟ

Language recognition anagn rish gl ssac language

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: trag nwn. least squares problem: pr blhma elaq stwn tetrag nwn. least upper bound: el qisto nw fr gma supremum. indirect least squares: mmesa el qista tetr gwna. principle of least time: arq tou el qistou qr nou. Lebesgue, (-). nwn. Lebesgue dominated convergence theorem: je rhma kuriarqhm nhc s Lebesgue integrability: oloklhrwsim thta kat Lebesgue. Lebesgue integrable: oloklhr simoc kat Lebesgue. Lebesgue integral: olokl rwma kat Lebesgue. Lebesgue measure: m tro Lebesgue. 183 gklishc tou Lebesgue. left: arister c, arister . left adjoint: arister c suzug c prosarthm noc. left factoring: arister paragontopo hsh. left-hand continuity: sun qeia ap arister . left-hand derivative: par gwgoc ap arister . left-hand limit: rio ap arister . left handed: arister c, arister strofoc. left-handed system: arister strofo s sthma. left ideal: arister ide dec. left recursion: arister anadrom . left-regular grammar: arister kanonik grammatik leftmost: akroarister . c, o arister teroc. terh paragwg (plhroforik ). leftmost derivation: arister Legendre, (-) Legendre functions: sunart seic Legendre. Legendre polynomials: polu numa Legendre. Legendre's di erential equation: diaforik ex swsh tou Legendre. associated Legendre functions: prosarthm nec sunart seic Legendre. Gauss-Legendre quadrature: arijmhtik olokl rwsh Gauss-Legendre. Leibniz, Gottfried Wilhelm (1646-1716) Leibniz's formula: t poc tou Leibniz. Leibniz's rule: kan nac tou Leibniz. lemma: l mma. condensation lemma: l mma sump knwshc. lemniscate: lhmn skoc. length: m koc. length-preserving transformation: apeik nish diathro arc length: m koc t xou. focal length: estiak ap stash. back focal length: dexi estiak ap stash. e ective focal length: olik estiak ap stash. front focal length: arister estiak ap stash. mixing length: m koc m xhc an mixhc. lens: fak c. lens-shaped: fakoeid c. lens-shaped region: fakoeid c t poc, fakoeid anamorphic lens: anamorfik c fak c. biconcave lens: amf koiloc fak c. biconvex lens: amf kurtoc fak c. compound lens: s njetoc fak c. eye lens: prosofj lmioc fak c. eld lens: fak c ped ou. c qwr o. 184 sa ta m kh. negative lens: arnhtik c apokl nwn fak object lens: antikeimenik c fak c. split lens: hmifak c. telephoto lens: thlefak c. thin lens: lept c fak c. c. lepto-: lepto- (pr jema). leptokurtosis: leptok rtwsh. leptokurtic: lept kurtoc, leptokurtwtik leptokurtic distribution: lept level: ep pedo, c. kurth katanom , katanom leptok rtwshc. yoc, st jmh. level of signi cance: ep pedo shmantik thtac. level surface: isostajmik epif neia. con dence level: suntelest c empistos nhc. quality level: ep pedo poi thtac. reliability level: ep pedo axiopist ac. lever: moql side lever: c. pleurik c moql c. lexicographic: lexikografik lexicographic order: c. lexikografik alfabhtik di taxh. L' Hospital, Guillaume (1661-1704) L' Hospital's rule: kan nac tou L' Hospital. Liapunov, A.M. (1857-1918). Sunant tai ep shc kai wc Lyapunov. Liapunov convexity theorem: je rhma kurt thtac tou Liapunov. Liapunov exponen...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online