dict1_ΛΕΞΙΚΟ

Dict1ΛΕΞΙÎΟ

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: matrix: p nakac m zac. mass transport: metafor m zac. center of mass: k ntro m zac. probability mass: m za pijan thtac. rest mass: m za hrem ac. master: k rioc. master element: stoiqe o anafor c, basik pr tupo stoiqe o. match: sunarm zw, tairi zw, antistoiq zw, prosarm zw, zeugar nw, enarmon zw, sunarmog , antisto qish, prosarmog , ta riasma. weak match: asjen c sunarmog , asjen c ta riasma. 195 matched: sunarmosm noc, tairiasm noc. matching layer: str matching: sunarm ma perioq sunarmog c. g , prosarmog , ta riasma, antisto qish, sunarm zwn, prosarm zwn. n anaptugm twn matched asymptotic expansions: m jodoc sunarmosm nwn asumptwtik idiazous n diataraq n (singular perturbation method). material: ulik c, ulik , lh. m jodoc material approach: ulik je rhsh je rhsh kat Lagrange (Lagrangian approach). material derivative: ousiastik ousi dhc ulik par gwgoc (sun. substantial substantive convective derivative). material description: ulik perigraf perigraf kat Lagrange (Lagrangian description). raw materials: pr tec lec. smart materials: xupna ulik . strength of materials: antoq mathematical: majhmatik twn ulik n. c. mathematical analysis: majhmatik an lush. mathematical expectation: majhmatik prosdok a elp da. mathematical formulation: majhmatik diat pwsh jemel wsh. mathematical horizon: majhmatik c or zontac. mathematical induction: majhmatik epagwg . mathematical model: majhmatik mont lo. mathematical modeling: majhmatik montelopo hsh. mathematical physics: majhmatik fusik . mathematician: majhmatik mathematics: majhmatik . c. abstract mathematics: afhrhm na majhmatik . advanced mathematics: an tera majhmatik . applied mathematics: efarmosm na majhmatik . computational mathematics: upologistik majhmatik discrete mathematics: diakrit majhmatik . pure mathematics: kajar jewrhtik majhmatik . matrices: bl. matrix. matrix (pl. matrices): p nakac, m tra, mhtr o. . matrix analysis: pinakoan lush, an lush pin kwn. matrix form: morf pin kwn, mhtrik morf , pinakomorf . matrix of a formula: m tra t pou. matrix multiplication: pollaplasiasm c pin kwn. matrix notation: sumbolism c pin kwn. matrix theory: pinakojewr a, jewr a pin kwn. acquaintance matrix: p nakac gnwrim ac. adjoint matrix: prosarthm noc p nakac, sumplhrwmatik c p nakac. adjugate matrix: prosarthm noc p nakac, sumplhrwmatik c p nakac (sun. adjoint matrix). alternating matrix: enall sswn p nakac. augmented matrix: epauxhm noc p nakac. band matrix: tainiwt c p nakac p nakac tain a. 196 bidiagonal matrix: didiag nioc p nakac. block matrix: s njetoc p nakac (sun. partitioned matrix). block diagonal matrix: s njetoc diag nioc p nakac, mplok-diag nioc p nakac. block matrix multiplication: s njetoc pollaplasiasm c pin kwn. centroskew matrix: kentro-antisummetrik c p nakac (p nakac A pou ikanopoie thn A=-RAR, pou tetragwnik c p nakac tou opo ou ta stoiqe a e nai 1 sth deutere ousa diag nio kai 0 allo ). centrosymmetric matrix: kentrosummetrik c p nakac (p nakac A pou ikanopoie thn A=RAR, pou tetragwnik c p nakac t...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online