Naive aplo k c naked gumn c naked singularity gumn c

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: otent group: mhdenod namh om da. nilpotent matrix: mhdenod namoc p nakac. nilpotent ring: mhdenod namoc dakt lioc. nodal: kombik c. nodal point: kombik shme o. nodal unknown: kombik c gnwstoc. nodal variable: kombik metablht . node: k mboc, desm c. jewr a k mbwn. node theory: noded: me k mbouc. six-noded element: stoiqe o me xi k mbouc. Noether, Emmy: (1882-1935). 217 noise: j ruboc. leuk c j ruboc. white noise: nominal: onomastik c. nominal data: onomastik dedom na. nominally: onomastik . nomogram: nom gramma. non-: mh (pr jema). nona-: enn a- (pr jema, sun. ennea-). nonagon: enne gwno. non-analytic: mh analutik c. non-analytic function: mh analutik sun rthsh. non-autonomous: mh aut non-autonomous system: nomoc. mh aut nomo s sthma. non-axisymmetric: mh axonosummetrik c, o mh nonblank: mh ken c. nonblank symbol: mh ken non-central: mh kentrik c. non-central distribution: mh kentrik non-centrality: mh kentrik qwn kulindrik summetr a. s mbolo. katanom . thta, ekkentr thta. non-centrality matrix: p nakac ekkentr thtac. non-centrality parameter: par metroc ekkentr thtac. non-circular: mh kuklik non-circular statistic: c. mh kuklik statistik sun rthsh. noncommutative: mh antimetajetik c. noncommutative algebra: mh antimetajetik lgebra. noncommutative matrices: mh antimetajetiko mh antimetaj simoi p nakec. noncommutativity: mh antimetajetik thta. non-commuting: mh antimetajetik c, mh antimetaj simoc. non-commuting matrices: mh antimetajetiko mh antimetaj simoi p nakec. non-commuting polynomials: mh antimetajetik mh antimetaj sima polu numa. non-compact: mh sumpag c, asumpag c. mh sumpag c epif neia non-compact Riemann surface: Riemann. non-compactness: asump geia, to asumpag c, mh sump non-complete: mh pl rhc. 218 geia. non-completeness: mh plhr thta. rhma mh plhr thtac. non-completeness theorem: je nonconforming: mh summorfik nonconforming nite elements: non-convex: mh kurt c. mh summorfik peperasm na stoiqe a. c, ko loc. non-convex polygon: mh kurt pol gwno (sun. concave polygon). non-convex polyhedron: mh kurt pol edro (sun. concave polyhedron). non-cylindrical: mh kulindrik c. non-cylindrical domain: mh kulindrik qwr o. non-decreasing: mh fj nwn. non-decreasing function: mh fj nousa sun rthsh. non-decreasing sequence: mh fj nousa akolouj a. non-defective: mh ellip c. non-defective matrix: mh ellip c p nakac. non-degeneracy: mh ekfulism c, to mh ekfulism no. nondegenerate: mh ekfulism noc. nondegenerate conic: mh ekfulism nh kwnik . nondegenerate system: mh ekfulism no s sthma. nondense: mh pukn nondense set: c. mh pukn s nolo. non-determination: mh prosdiorism non-determination coe cient: c. suntelest c mh prosdiorismo . nondeterminism: mh nteterminism c. nondeterministic: mh nteterministik c, mh prosdioristik nondeterministic time: mh nteterministik c qr noc. nondimensionalization: adiastatopo hsh. nondimensionalize: adiastatopoi . nonemptiness: mh ken thta. nonempty: mh ken c. nonempty set: mh ken s nolo. nonequilibrium: mh isorrop a, ekt non-Euclidean: mh eukle deioc. c isorrop ac. non-Euclidean norm:...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online