dict1_ΛΕΞΙΚΟ

Niou a posteriori ek twn ust rwn lat a posteriori

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ex: koruf . apex angle: diajlastik ). gwn a pr smatoc. aphelion: af lio. apodization: ap dush. apogee: ap geio. Apollonius: Apoll nioc. Apollonius' problem: pr blhma tou Apoll circle of Apollonius: Apoll neioc k kloc. niou. a posteriori: ek twn ust rwn (lat.). a posteriori approach: a posteriori m jodoc. a posteriori error estimation: a posteriori ekt mhsh sf apparent: fain menoc, fainomenik c. apparent acceleration: fain menh epit qunsh. apparent velocity: fain menh taq thta. applicability: efarmosim thta, dunat applicable: efarm simoc. applicable surface: thta efarmog c. efarm simh epif neia. 16 lmatoc. application: efarmog . apply: efarm zw. applied: efarmosm noc. applied mathematics: efarmosm na majhmatik approach: pros ggish, m jodoc, je . rhsh. approach velocity: taq thta pros ggishc. alternative approach: enallaktik pros ggish. a posteriori approach: a posteriori m jodoc. a priori approach: a priori m jodoc. axiomatic approach: axiwmatik m jodoc. Eulerian approach: je rhsh kat Euler. explicit approach: analut mesh m jodoc. implicit approach: mh analut mmesh m jodoc. Lagrangian approach: je rhsh kat Lagrange ulik je rhsh (material approach). material approach: ulik je rhsh je rhsh kat Lagrange (Lagrangian approach). appropriate: kat llhloc. appropriate truth assignment: kat llhlh ap dosh tim n al narrowly appropriate structure: sten kat llhlh dom . appropriately: kat llhla. approximate: prosegg zw, proseggistik jeiac. c. approximate formula: proseggistik c t poc. approximate solution: proseggistik l sh. approximation: pros ggish. approximation theory: jewr a pros ggishc. a ne approximation: susqetism nh pros ggish. best approximation: b ltisth pros ggish. best approximation theorem: je rhma b ltisthc pros ggishc. discrete approximation: diakrit pros ggish. least squares approximation: pros ggish elaq stwn tetrag nwn. linear approximation: grammik pros ggish. method of successive approximations: m jodoc twn diadoqik n prosegg sewn. polynomial approximation: poluwnumik pros ggish. rational approximation: rht pros ggish pros ggish me rht c sunart seic. stochastic approximation: stoqastik pros ggish. successive approximations: diadoqik c prosegg seic. symbolic approximation: sumbolik pros ggish. trigonometric approximation: trigwnometrik pros ggish. uniform approximation: omoi morfh pros ggish. a priori: ek twn prot rwn (lat.). a priori approach: a priori m jodoc. apse: ay da (sun. apsis). 17 apsidal: ayidoeid c. apsis: ay da. arabic: arabik c. arabic numerals: arabiko arijmo . arbitrarily: auja reta. arbitrariness: to auja reto. arbitrary: auja retoc, tuq n. arbitrary constant: auja reth stajer , tuqo sa stajer . arbitrary function: auja reth sun rthsh, tuqo sa sun rthsh. method of arbitrary lines: m jodoc twn auja retwn gramm n. arc: t xo. arc length: m koc t xou. parabolic arc: parabolik t xo. positive arc: jetik t xo. recti able arc: t xo me upolog simo (peperasm no) m simple arc: apl t xo. archetype: arq tupo. Archimedean: arqim deioc, tou Arqim koc...
View Full Document

Ask a homework question - tutors are online