{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

dict1_&Icirc;›&Icirc;•&Icirc;ž&Icirc;™&Icirc;š&Icirc;Ÿ

# Recurrence formula anadromik recurrence relation

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ar polygon: kanonik omal pol gwno. regular polyhedra: kanonik omal pol edra (bl. polyhedron). regular pyramid: kanonik puram da. regular quadrilateral: kanonik tetr pleuro. regular representation: kanonik par stash. regular singular point: s nhjec idi zon an malo shme o. regular solids: kanonik omal s mata (sun. regular polyhedra). regular space: kanonik c q roc. Metafr zetai ep shc wc fusiologik di krish ap to normal space. regular summability: kanonik ajroisim thta. 283 c q roc prokeim nou na g nei regular tetrahedron: kanonik regular tiling: kanonik omal omal tetr edro. plak strwsh. regularity: kanonik thta, omal thta. regularization: omalopo hsh, kanonikopo hsh. regularized: omalopoihm noc, kanonikopoihm noc. regularized inversion: omalopoihm nh antistrof regularly: kanonik , omal reject: aporr ptw. rejection: ap rriyh. rejection region: qwr o . . perioq ap rriyhc. relation: sq sh. antisymmetric relation: antisummetrik sq sh. auxiliary relation: bohjhtik sq sh. binary relation: dimel c duadik sq sh. circular relation: kuklik sq sh. constitutive relation: katastatik sq sh, ulik sq sh. converse relation: ant strofh sq sh. equality relation: sq sh is thtac. equivalence relation: sq sh isodunam ac. intransitive relation: mh metabatik sq sh. inverse relation: ant strofh sq sh. monadic relation: monomel c monadia a sq sh, kathg rhma miac j shc (sun. unary relation kai one-place predicate). projective relation: probolik sq sh. recurrence relation: anadromik sq sh. re exive relation: anaklastik autopaj c sq sh. symmetric relation: summetrik sq sh. ternary relation: trimel c triadik sq sh. transition relation: sq sh met bashc. transitive relation: metabatik sq sh. unary relation: monomel c monadia a sq sh, kathg rhma miac j shc (sun. monadic relation kai one-place predicate). relational: sqesiak relational algebra: c. sqesiak lgebra. relationship: sq sh. linear relationship: grammik sq sh. non-linear relationship: mh grammik sq relative: sqetik sh. c, suggen c. relative acceleration: sqetik epit qunsh. relative change: sqetik metabol . relative e ciency: sqetik apotelesmatik thta apodotik thta. 284 relative error: sqetik sf lma. relative frequency: sqetik suqn thta. relative frequency distribution: katanom sqetik c suqn relative maximum: sqetik m gisto. relative minimum: sqetik el qisto. relative prime numbers: pr toi metax touc arijmo . relative stability: sqetik eust jeia. relative topology: sqetik topolog a. relative velocity: sqetik taq thta. relatively: sqetik . relatively prime: sqetik relativistic: sqetikistik pr toi (arijmo ). c. relativistic mechanics: sqetikistik relativity: sqetik thta. special relativity: eidik relaxation: qal thtac. mhqanik . sqetik thta. rwsh. m jodoc qal rwshc. relaxation method: reliable: axi pistoc. reliability: axiopist a. reliability level: ep pedo axiopist ac. remainder: up loipo. remainder theorem: je rhma tou upolo pou. Chinese remainder theorem: je rhma upolo pou tou Kin zou (logik ). remeshing: anakataskeu pl gmatoc, anaplegm twsh. removable: apale yimoc, diorj simoc, afairet c. remov...
View Full Document

{[ snackBarMessage ]}