Rthsh el gqou belhnek c di sthma ktash pl toc katanom

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: opoi rectifying: anorj nwn, eujeiopoi n, apokajist n. rectifying plane: . eujeiopoi ep pedo. rectilinear: euj grammoc. rectilinear axis: euj grammoc xonac. rectilinear gure: euj grammo sq ma. rectilinear polygon: euj grammo pol gwno. recurrence: anadrom . recurrence formula: anadromik recurrence relation: anadromik recurring: anadromik c t poc. sq sh. c, epanalhptik c. epanalhptik suneq c kl sma. recurring continuous fraction: recursion: anadrom . recursion formula: anadromik c t poc. recursion theory: jewr a anadrom n, jewr a anadromik double recursion: dipl anadrom . multiple recursion: pollapl anadrom . primitive recursion: basik arq gonh anadrom . trans nite recursion: uperpeperasm nh anadrom . recursive: anadromik n sunart sewn. c. recursive formula: anadromik c t poc. recursive function: anadromik sun rthsh. recursive isomorphism: anadromik c isomorfism c. recursive predicate: anadromik kathg rhma. recursive set: anadromik s nolo. partial recursive functions: merik c anadromik c sunart seic. primitive recursive functions: basik c anadromik c sunart seic. primitive recursive sets: basik anadromik s nola. recursively: anadromik . recursively enumerable sets: anadromik recursively isomorphic sets: anadromik recursiveness: anadromik arijm sima s nola. is morfa s nola. thta. 280 recurvature: anakamp lwsh, anakampul redistribution: anakatanom . mesh redistribution: reduce: an tha. anakatanom pl gmatoc. gw, elatt nw, upobib zw. gw na pr blhma se llo. reduce a problem to another: an reduced: anhgm noc, elattwm noc, upobibasm noc. reduced column echelon form: anhgm nh klimakwt morf kat st lec. reduced echelon form: anhgm nh klimakwt morf . reduced echelon matrix: anhgm noc klimakwt c p nakac. reduced row echelon form: anhgm nh klimakwt morf kat gramm c. reducibility: anagwgim thta. reducible: anag gimoc. reducible transformation: anag gimoc metasqhmatism c. reduct: surr knwsh. reductio ad absurdum (lat.): m jodoc thc apagwg c se topo (proof by contradiction). reduction: anagwg , aplopo hsh, upopollaplasiasm c, me wsh. reduction formula: anagwgik c t poc. error reduction: me wsh sf lmatoc. Gauss-Jordan reduction: anagwg apaloif (elimination) Gauss-Jordan. symplectic reduction: sumplektik anagwg . reference: anafor . reference element: stoiqe o anafor c, basik pr tupo stoiqe o. reference level: ep pedo anafor c. reference point: shme o anafor c. frame of reference: s sthma anafor c. system of reference: s sthma anafor c. accelerated system of reference: epitaqun meno s sthma anafor c. re ne: exeugen zw, eklept nw, pukn nw (gia pl gmata). gma. re ned mesh: puknwm no pl re nement: exeugenism c, ekleptusm c, p knwsh (gia pl gmata). mesh re nement: p knwsh pl gmatoc. iterative mesh re nement: epanalhptik re ect: anakl . re ectance: anaklastik thta. re ecting: anaklastik c, anakl p knwsh pl gmatoc. n. re ecting boundary: anaklastik s noro. re ecting barrier: anaklastik fr gma. 281 re ection: an klash. re ection principle: arq thc anakl sewc. internal re ection: eswterik an...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online