dict1_&Icirc;›&Icirc;•&Icirc;ž&Icirc;™&Icirc;š&Icirc;Ÿ

# Unbiasedness amerolhy a unbounded mh fragm noc

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: noc alg rijmoc. unstructured method: mh domhm nh m jodoc. unsymmetric: mh summetrik c, as up: nw, p nw. update: enhmer nw, anane nw. update operation: upper: mmetroc. pr xh anan wshc. nw, an teroc. upper bound: nw fr gma nw p rac. upper con dence limit: an tero rio empistos nhc. upper limit: an tero rio. upper tolerance limit: an tero rio anoq c. upper-triangular matrix: nw trigwnik c p nakac. essential upper bound: ousi dec nw fr gma. least upper bound: el qisto nw fr gma supremum. upstream: an nth. upward: anodik c. upward Lovenheim-Skolem theorem: anodik upwards: proc ta p upwind: . je rhma twn nw. upwind algorithm: . 368 Lovenheim-Skolem. upwinding: . urelement: tomo, stoiqe o pou den e nai s Urysohn, Paul (1898-1924) nolo (logik ). Urysohn lemma: l mma tou Urysohn. Urysohn theorem: je rhma tou Urysohn. use: qr sh, qrhsimopoi . V vs. (Lat. versus): enant on, wc proc. vacuous: ken c. vacuousness: ken thta. vacuously: ken c, me ken tr po. vacuously true statement: pr vacuum: ken . valid: isq w, isq tash alhj c me ken tr po, adi fora alhj c pr tash. wn, gkuroc. valid formula: gkuroc t poc. valid results: gkura apotel smata. validate: epikur nw. validation: epik rwsh. validity: isq c, k roc. valuation: ekt mhsh. value: tim , ax a. absolute value: ap luth tim . boundary value: sunoriak tim . boundary value problem: pr blhma sunoriak n tim n. Cauchy principal value: prwte ousa tim tou Cauchy. characteristic value: qarakthristik tim , idiotim (bl. eigenvalue). complex valued: migadik c. complex-valued function: migadik sun rthsh. critical value: kr simh tim . dividing value: diaqwristik tim . expected value: anamen menh prosdok menh prosdokht c m sh tim extreme value: akr tath tim . initial boundary value problem: pr blhma arqik n sunoriak n tim n. initial value: arqik tim . initial value problem: pr blhma arqik n tim n. 369 majhmatik elp da. integral mean value theorem: je rhma m shc tim c gia oloklhr intermediate value: endi mesh tim . intermediate value theorem: je rhma endi meshc tim c. latent value: idiotim (bl. eigenvalue). many-valued: pleion timoc. many-valued function: plei timh sun rthsh. matrix-valued function: pinakosun rthsh. mean value: m sh tim . mean value theorem: je rhma m shc tim c. measure-valued function: metrosun rthsh. multi-valued function: plei timh sun rthsh. multiple-valued function: plei timh sun rthsh. numerical value: arijmhtik tim . present value: paro sa tr qousa tim . principal value: prwte ousa tim . probable value: pijan tim . proper value: idiotim (bl. eigenvalue). single-valued: mon timoc. single-valued function: mon timh sun rthsh. starting value: arqik tim , tim narxhc. truth value: tim al jeiac, alh0otim . vector-valued function: dianusmatik sun rthsh. Vandermonde, Theophile (1735-1796) Vandermonde determinant: or zousa tou Vandermonde. van Dyck, Walter (1856-1934) vanish: mhden zw. vanishing: mhdeniz menoc. vanishing term: mhdeniz menoc roc. variability: metablht thta. variable: metablht , metablht c. variable limits of integration:...
View Full Document

Ask a homework question - tutors are online