dict1_ΛΕΞΙΚΟ

Unstructured method mh domhm nh m jodoc variable step

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: oc tr poc (tal ntwshc). fundamental mode: jemeli dhc tal ntwsh tr poc (tal ntwshc). normal mode: kanonik c tr poc. normal modes of vibration: kanoniko tr poi tal ntwshc. solenoidal modes: swlhnoeide c tr poi. spurious mode: plasmatik c tr poc. model: mont lo, up deigma, pr tupo. model theory: jewr a mont lwn. additive model: prosjetik mont lo. countable model: metr simo mont lo. counter model: aparijmhtik mont lo. discrete model: diakrit mont lo. environmental model: periballontik mont lo. nite model: peperasm no mont lo. free model: ele jero mont lo. linear model: grammik mont lo. mathematical model: majhmatik mont lo. multi-temporal model: poluqronik mont lo. prime model: pr to mont lo. randomized model: tuqaiopoihm no mont lo. stationary model: st simo mont lo. modeling ( modelling): montelopo hsh. mathematical modeling: majhmatik montelopo hsh. mesoscale modeling: montelopo hsh m shc kl makac. moderate: m trioc, metriopaj modi cation: tropopo hsh. c. 207 modi ed: tropopoihm noc. modi modi modi modi ed Bessel functions: tropopoihm nec sunart ed di erences: tropopoihm nec diafor c. ed function: tropopoihm nh sun rthsh. ed moments: tropopoihm nec rop c. seic Bessel. modify: tropopoi . modular: modular, me m tro. modular function: modulation: diam metrosun rthsh. rfwsh. amplitude modulation: diam module: pr rfwsh pl touc (optik ). tupo. commutative module: antimetajetik graded module: bajmwt pr tupo. modulo: modulo. modulus: m tro, ap metabatik pr tupo. luth tim . modulus of a complex number: m tro ap luth tim migadiko modulus of elliptic function: m tro elleiptik c sunart sewc. modulus in tension: m tro efelkusmo . modulus of elasticity: m tro elastik thtac. complementary modulus: sumplhrwmatik m tro. maximum modulus: m gisto m tro. maximum modulus theorem: je rhma tou meg stou m trou. minimum modulus: el qisto m tro. minimum modulus theorem: je rhma tou elaq stou m trou. Moebius, (-). Moebius strip: lwr da tou Moebius. Moebius transformation: metasqhmatism c Moebius. molecular: moriak c. molecular biology: moriak biolog a. molecular dynamics: dunamik mor wn moriak molecular simulation: moriak prosomo wsh. dunamik . molecularly: moriak . molecule: m rio. moment: rop , stigm . moment of inertia: rop adr neiac. moment generating function: ropogenn absolute moment: ap luth rop . bending moment: rop k myhc. canonical moment: kanonik rop . central moment: kentrik rop . tria sun rthsh. 208 arijmo . conditional moment: desmeum nh rop rop up sunj kh. inverse moment: ant strofh rop . joint moment: mikt rop . modi ed moments: tropopoihm nec rop c. multivariate moment: polumetablht mikt rop . principal moments of inertia: k riec rop c adr neiac. probability moment: rop pijan thtac. product moment: mikt rop . product-moment formula: t poc mikt c rop c tou ginom nou rop raw moment: mh kentrik rop . static moment: statik rop . momentum: orm . momentum balance: isoz gio orm c. momentum conservation: diat rhsh thc orm c. momentum coordinates: suntetagm nec orm c. momentum equation: ex swsh (diat rhshc thc) orm momentu...
View Full Document

This note was uploaded on 08/12/2012 for the course MATH 100 taught by Professor 100 during the Spring '12 term at ESADE.

Ask a homework question - tutors are online