LearningGuide

# The explicit option maple may return the solution to

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 404, 6.948819108, 6.923289158, 6.902789477, 6.888196449, 6.877830055, 6.870316621, 6.864739771, 6.860504866, 6.857222009, 6.854630209, 6.852550664 Use the option output = animation to create an animation for the left Riemann sum. 234 • Chapter 7: Solving Calculus Problems > ApproximateInt( f(x), x=0..4*Pi, method=left, partition=6, > output=animation, iterations=7); AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1.5 1.5 AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1.5 AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1.5 AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1 1 1 1 0.5 0.5 0.5 0.5 0 2 4 6 x 8 10 12 0 2 4 6 x 8 10 12 0 2 4 6 x 8 10 12 0 2 4 6 x 8 10 12 –0.5 –0.5 –0.5 –0.5 –1 Area:6.283185309 –1 Area:6.283185308 –1 Area:6.283185308 –1 Area:6.283185311 f(x) f(x) f(x) f(x) AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1.5 1.5 AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1.5 AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,4*Pi] UsingaLeft-endpointRiemannSum ApproximateValue:6.283185307 1 1 1 0.5 0.5 0.5 0 2 4 6 x 8 10 12 0 2 4 6 x 8 10 12 0 2 4 6 x 8 10 12 –0.5 –0.5 –0.5 –1 Area:6.283185308 –1 Area:6.283185309 –1 Area:6.283185309 f(x) f(x) f(x) In the limit, as the number of boxes tends to inﬁnity, you obtain the deﬁnite integral. > Int( f(x), x=0..10 ); 10 0 1 + sin(x) dx 2 The value of the integral is > value( % ); −cos(10) + 6 and in ﬂoating-point numbers, this value is approximately > evalf( % ); 6.839071529 The indeﬁnite integral of f is > Int( f(x), x ); 7.1 Introductory Calculus • 235 1 + sin(x) dx 2 > value( % ); 1 x − cos(x) 2 Deﬁne the function F to be the antiderivative. > F := unapply( %, x ); F := x → 1 x − cos(x) 2 Choose the constant of integration so that F (0) = 0. > F(x) - F(0); 1 x − cos(x) + 1 2 > F := unapply( %, x ); F := x → 1 x − cos(x) + 1 2 If you plot F and the left-boxes together, F increases faster when the corresponding box is larger, that is, when f is bigger. > with(plots): > display( [ plot( F(x), x=0..10, color=blue, legend="F(x)" ), > ApproximateInt( f(x), x=0..10, partition=14, > method=left, output=plot) ] ); 236 • Chapter 7: Solving Calculus Problems AnApproximationoftheIntegralof f(x)=1/2+sin(x) ontheInterval[0,10] UsingaLeft-endpointRiemannSum ApproximateValue:6.839071529 1.5 1 0.5 0 2 4 x 6 8 10 –0.5 –1 Area:6.954499888 F(x) f(x) By specifying method = right or method = midpoint when using the ApproximateInt command, yo...
View Full Document

## This note was uploaded on 08/27/2012 for the course MATH 1100 taught by Professor Nil during the Spring '12 term at National University of Singapore.

Ask a homework question - tutors are online