The spring is generally made from plain carbon spring

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: arm is generally of I-section but for low speed engines, it can be of rectangular section. Due to the load on the valve, the rocker arm is subjected to bending moment. Let l = Effective length of each rocker arm, and σb = Permissible bending stress. We know that bending moment on the rocker arm, M = Fe × l ...(i) We also know that bending moment, M = σb × Z ...(ii) where Z = Section modulus. From equations (i) and (ii), the value of Z is obtained and thus the dimensions of the section are determined. 4. Design for tappet. The tappet end of the rocker arm is made circular to receive the tappet which is a stud with a lock nut. The compressive load acting on the tappet is the maximum load on the rocker arm for the exhaust valve (Fe). Let dc = Core diameter of the tappet, and σc = Permissible compressive stress for the material of the tappet which is made of mild steel. It may be taken as 50 MPa. We know that load on the tappet, π 2 Fe = (dc ) σc 4 From this expression, the core diameter of the tappet is determined. The outer or n...
View Full Document

This note was uploaded on 09/30/2012 for the course MECHANICAL 403 taught by Professor A.thirumoorthy during the Spring '11 term at Anna University Chennai - Regional Office, Coimbatore.

Ask a homework question - tutors are online