0 kjk 15 kjk therefore 15 kjk of entropy is generated

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e Ssink ( 2.5 4.0) kJ/K 1.5 kJ/K Therefore, 1.5 kJ/K of entropy is generated during this process. Noting that both reservoirs have undergone internally reversible processes, the entire entropy generation took place in the partition. (b) Repeating the calculations in part (a) for a sink temperature of 750 K, we obtain Ssource Ssink 2.5 kJ/K 2.7 kJ/K and Sgen Stotal ( 2.5 2.7) kJ/K 0.2 kJ/K The total entropy change for the process in part (b) is smaller, and therefore it is less irreversible. This is expected since the process in (b) involves a smaller temperature difference and thus a smaller irreversibility. Discussion The irreversibilities associated with both processes could be eliminated by operating a Carnot heat engine between the source and the sink. For this case it can be shown that Stotal 0. 7–3 I ENTROPY CHANGE OF PURE SUBSTANCES Entropy is a property, and thus the value of entropy of a system is fixed once the state of the system is fixed. Specifying two intensive independent properties fixes the state of a simple compressible system, and thus the value of entropy, as well as the values of other properties at that st...
View Full Document

This document was uploaded on 11/28/2012.

Ask a homework question - tutors are online