# Cooling water enters the tubes at 60f at a rate of

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6 kJ/kg · °C) flowing at a rate of 2 kg/s from 80°C to 40°C by water (Cp 4.18 kJ/kg · °C) that enters at 20°C and leaves at 55°C. Determine (a) the rate of heat transfer and (b) the rate of entropy generation in the heat exchanger. 7–113 A well-insulated, thin-walled, double-pipe, counterflow heat exchanger is to be used to cool oil (Cp 2.20 kJ/kg · °C) from 150°C to 40°C at a rate of 2 kg/s by water (Cp 4.18 kJ/kg · °C) that enters at 22°C at a rate of 1.5 kg/s. Determine (a) the rate of heat transfer and (b) the rate of entropy generation in the heat exchanger. 7–114 Cold water (Cp 4.18 kJ/kg · °C) leading to a shower enters a well-insulated, thin-walled, double-pipe, counter-flow heat exchanger at 15°C at a rate of 0.25 kg/s and is heated to 0.25 kg/s 15°C Hot water 100°C 3 kg/s 45°C FIGURE P7–114 Cold water 7–117E Steam is to be condensed on the shell side of a heat exchanger at 90°F. Cooling water enters the tubes at 60°F at a rate of 115.3 lbm/s and leaves at 73°F. Assuming the heat exchanger to be well-insulated, determine (a) the rate of heat transfer in the...
View Full Document

## This document was uploaded on 11/28/2012.

Ask a homework question - tutors are online