Oil 170c 10 kgs 70c water 20c 45 kgs brine 140c figure

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: anger. 7–115 Air (Cp 1.005 kJ/kg · °C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 1.6 m3/s. The combustion gases (Cp 1.10 kJ/kg · °C) enter at 180°C at a rate of 2.2 kg/s and leave at 95°C. Determine the rate of heat transfer to the air, the outlet temperature of the air, and the rate of entropy generation. 7–116 A well-insulated, shell-and-tube heat exchanger is used to heat water (Cp 4.18 kJ/kg · °C) in the tubes from 20°C to 70°C at a rate of 4.5 kg/s. Heat is supplied by hot oil 2.30 kJ/kg · °C) that enters the shell side at 170°C at (Cp a rate of 10 kg/s. Disregarding any heat loss from the heat exchanger, determine (a) the exit temperature of the oil and (b) the rate of entropy generation in the heat exchanger. Oil 170°C 10 kg/s 70°C Water 20°C 4.5 kg/s Brine 140°C FIGURE P7–116 60°C FIGURE P7–111 7–112 An adiabatic heat exchanger is to cool ethylene glycol (Cp 2.5...
View Full Document

This document was uploaded on 11/28/2012.

Ask a homework question - tutors are online