{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

When the working fluid is an incompressible fluid the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: n the υ dP in these relations and P dυ is striking. They should not be confused with each other, however, since P dυ is associated with reversible boundary work in closed systems (Fig. 7–41). Obviously, one needs to know υ as a function of P for the given process to perform the integration. When the working fluid is an incompressible fluid, the specific volume υ remains constant during the process and can be taken out of the integration. Then Eq. 7–51 simplifies to wrev υ (P2 P1) ke pe (kJ/kg) P1) 2 2 2 1 2 g(z2 z1) 0 ∫ wrev = – υ dP 1 (a) Steady-flow system wrev (7–54) For the steady flow of a liquid through a device that involves no work interactions (such as a nozzle or a pipe section), the work term is zero, and the equation above can be expressed as υ (P2 wrev (7–55) which is known as the Bernoulli equation in fluid mechanics. It is developed for an internally reversible process and thus is applicable to incompressible fluids that involve no irreversibilities such as friction or shock waves. This equation can be modified, however, to incorporate these effects. Equation 7–5...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online