alittlebitofcalculus-pdf-january2011-111112001007-phpapp01

We sum up all the negative and positive areas to get

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: s due to (negative f(x)) . (positive direction ) . 150 4 Note: f(x) δx is an infinitesimal element of area. f(x) = -- 2x δ x -- 1 2 1 δx 0 -- 1 -- 2 -- 3 F(x) = -- x 2 f(x)dx is an i nstantaneous element o f area. If we try to depict it, it will appear as a line. -- 4 151 151 1 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 -- 2 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 -- 3 3 2 3 x F(2) -- F(1) = -- (2) 2 -- (-- (1) 2 ) = -- 3 The CHANGE in F(x) is 3 in magnitude. The -- SIGN reflects a DECREASE in F(x) over [1, 2] in the positive direction . positive continuous Example 6: Integrate contin uous f (x) over the inter val [1, 2] going c ontin RIGHT to LEFT in the negative direction . negative T he AREA under f(x) over the inter val [1, 2] going RIGHT to LEFT in the negative direction i s : negative ∫ 1 2 f (x)dx = ∫ 1 [-- x 2 ] 2 1 2 -- 2x dx = [-- x 2 ] - 1 2 = -- (1) 2 -- ( -- (2) 2 ) = -- 1 + 4 = + 3 The AREA is 3 in magnitude. The + SIGN is due to (negative f(x)) . (negative direction ) . F (1) -- F(2) = -- (1)2 -- (-- (2) 2 ) = + 3 The CHANGE in F(x) is 3 in magnitude. The + SIGN reflects an INCREASE in F(x) over [1, 2] in the negative direction. negative a b b a ∫ f (x)dx = -- ∫ -- f (x)dx RIGHT to LEFT = -- LEFT to RIGHT -over [a,b] over [a,b] 152 In all the previous examples f(x) did not CHANGE SIGN over the interval of integration. Now let us see two examples where f(x) CHANGES SIGN over the interval of integration. continuous --1, c ontin -Example 7: Integrate contin uous f (x) = 2x over the inter val [-- 2] going LEFT to RIGHT in the positive direction . See diagram page 148. positive The AREA under f(x) = 2x over the inter val [-- 2] going LEFT to RIGHT --1, -in the positive direction i s : positive 2 0 2 --1 -- --1 -- 0 ∫ 2x dx = ∫ 2x dx + ∫ 2 x dx We must brea...
View Full Document

This note was uploaded on 11/29/2012 for the course PHYSICS 105 taught by Professor Tamerdoğan during the Fall '09 term at Middle East Technical University.

Ask a homework question - tutors are online