The correlation coefficient for these data is 2zy

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: #y## x## ###$ŒÎv=ŒÎv=#########Œ##########z###,4# .4##þ###Œ4#####$Ý4#ŒŒÎv=«ªª= # %###farther away, and also not consistent##############Œ######×#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ####@### #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######0.7303########Œ######Ú#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ####@### #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######0.8###########Œ######Ý#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ#### ### #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######Small#########Œ######á#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ######## #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######(10, 0)#######Œ######ä#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ##########z###,4# .4##þ###"######$Ý4#ŒŒÎv=«ªª= #,###F#a#r#t#h#e#r# #a#n#d# #s#t#r#a#n#g#e#r#& #########Œ### ###ç#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ####@### #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######0.4888########Œ######ê#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ####@###Ê###@#####z###,4# Œ###>###.4##þ###w4# "##########$Ý4#ŒŒÎv=########«ªª= ###### ## # #0#.#3#7#4#0#######################Œ######í#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ#### ### #z###,4# Œ###>###.4##þ###w4# Œ4#####$Ý4#ŒŒÎv=########«ªª= ###### ######Small ########Œ######ï#####z###y## x## ###$ŒÎv=ŒÎv=#########Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= ##### ##########Œ### ###ñ#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ##################z###,4# þ###Œ4#########$Ý4#ŒŒÎv= #Õ###D) A point that dramatically changes the apparent slope of the regression line is called an influential point. You need to be able to spot potential influential points in a scatterplot. For what should you look?####\###m#################Œ ######ó#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= ##### ##########Œ### ###õ#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ##################z###,4# þ###Œ4#########$Ý4#ŒŒÎv= #C###To spot influential points in a scatterplot, look for points that depart from the overall pattern, especially those points that are outliers in the explanatory, or x, direction. DO NOT look for points with large residuals. Influential points change the slope of the regression lines, so they often have small residuals. ####¤###¥###########Œ######ø#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= #####WANDERING POINTS:##########Œ######ú#####z###y## x## ###### ###$ŒÎv=ŒÎv=###### ##Œ############û####### ####### #########z###,4# þ###"##########$Ý4#ŒŒÎv= #l###O#u#t#l#i#e#r#s# ## #a#r#e# #d#a#t#a# #p#o#i#n#t#s# #w#h#i#c#h# #a#r#e# #n#o#t#i#c#e#a#b#l#y# #d#i#f#f#e#r#e#n#t# #f#r#o#m# #t#h#e# #m#a#j#o#r#i#t#y# #o#f# #t#h#e# #s#a#m#p#l#e#.# # #E#x#a#m#p#l#e#s#:# #c#o#u#l#d# #b#e# #w#h#i#l#e# #l#o#o#k#i#n#g# #a#t# #h#e#i#g#h#t# #v#s#.# #w#e#i#g#h#t#,# #a#n# #8#-#f#o#o#t##t#a#l#l# #p#e#r#s#o#n# #w#h#o# #w#e#i#g#h#s# #1#2#0# #p#o#u#n#d#s#;# #o#r# #w#h#i#l#e# #l#o#o#k#i#n#g# #a#t# #d#a#t#a# #o#f# #t#e#m#p#e#r#a#t#u#r#e#s# #i#n# #d#i#f#f#e#r#e#n#t# #m#o#n#t#h#s#,# #a# #d#a#y# #i#n# #D#e#c#e#m#b#e#r# #w#h#e#r#e# #t#h#e# #t#e#m#p#e#r#a#t#u#r#e# #i#s# #1#0#0# #d#e#g#r#e#e#s#.########### ###Z###f###n###o###4##########Œ######ý#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= ##### ##########Œ### ###ÿ#####z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ############û#####z###,4# þ###"##########$Ý4#ŒŒÎv= #\###H#i#g#h# #L#e#v#e#r#a#g#e# #P#o#i#n#t#s# ## #a#r#e# #d#a#t#a# #p#o#i#n#t#s# #w#h#e#r#e# ######################Œ############z###y## x## ###### ###$ŒÎv=ŒÎv=#########Œ######## ####### #####z###,4# þ###Œ4#########$Ý4#ŒŒÎv= #?### is large, or data points where the x-value is far from the mean. A way to visualize this is to look at the linear model as a lever with the fulcrum at the mean point,. The farther a point is from the fulcrum, the more leverage it has in the model. These points have the potential to make a big impact on the model. ###$###%###}###############Œ################z###y## x## ###### ##$###$ŒÎv=ŒÎv=#################Œ################z###y## x## ###### ###$&##$ŒÎv=ŒÎv=#################Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= #[###Points with high leverage pull the line close to them, so they often have small residuals. ########Œ##z#######R###Ú#######À## #### ###ŒÎv=######" ####C#a#l#i#b#r#i#########*#########ÿ####Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= ##### ##########Œ################z###y## x## ###### ##$###$ŒÎv=ŒÎv=#################Œ################z###y## x## ###### ###$&##$ŒÎv=ŒÎv=#################Œ##########z###,4# þ###Œ4#####$Ý4#ŒŒÎv= #Œ###Influential points are more eas...
View Full Document

This note was uploaded on 12/12/2012 for the course MATH 1681 taught by Professor Staff during the Fall '11 term at North Texas.

Ask a homework question - tutors are online