# ch4 - Chapter 4 Numerical Dierentiation and Integration...

• Notes
• 30

This preview shows page 1 - 9 out of 30 pages.

The preview shows page 7 - 9 out of 30 pages.
Chapter 4Numerical Differentiation and IntegrationPer-Olof Persson[email protected]Department of MathematicsUniversity of California, BerkeleyMath 128A Numerical Analysis
Numerical DifferentiationForward and Backward DifferencesInspired by the definition of derivative:f0(x0) = limh0f(x0+h)-f(x0)h,choose a smallhand approximatef0(x0)f(x0+h)-f(x0)hThe error term for the linear Lagrange polynomial gives:f0(x0) =f(x0+h)-f(x0)h-h2f00(ξ)Also known as theforward-difference formulaifh >0and thebackward-difference formulaifh <0
General Derivative ApproximationsDifferentiation of Lagrange PolynomialsDifferentiatef(x) =nXk=0f(xk)Lk(x) +(x-x0)· · ·(x-xn)(n+ 1)!f(n+1)(ξ(x))to getf0(xj) =nXk=0f(xk)L0k(xj) +f(n+1)(ξ(xj))(n+ 1)!Yk6=j(xj-xk)This is the(n+ 1)-point formulafor approximatingf0(xj).
Commonly Used FormulasUsing equally spaced points withh=xj+1-xj, we have thethree-point formulasf0(x0) =12h[-3f(x0) + 4f(x0+h)-f(x0+ 2h)] +h23f(3)(ξ0)f0(x0) =12h[-f(x0-h) +f(x0+h)]-h26f(3)(ξ1)f0(x0) =12h[f(x0-2h)-4f(x0-h) + 3f(x0)] +h23f(3)(ξ2)f00(x0) =1h2[f(x0-h)-2f(x0) +f(x0+h)]-h212f(4)(ξ)and thefive-point formulaf0(x0) =112h[f(x0-2h)-8f(x0-h) + 8f(x0+h)-f(x0+ 2h)]+h430f(5)(ξ)
OptimalhConsider the three-point central difference formula:f0(x0) =12h[f(x0+h)-f(x0-h)]-h26f(3)(ξ1)Suppose that round-off errorsεare introduced whencomputingf. Then the approximation error isf0(x0)-˜f(x0+h)-˜f(x0-h)2hεh+h26M=e(h)where˜fis the computed function and|f(3)(x)| ≤MSum oftruncation errorh2M/6andround-off errorε/hMinimizee(h)to find the optimalh=3p
Richardson’s ExtrapolationSupposeN(h)approximates an unknownMwith errorM-N(h) =K1h+K2h2+K3h3+· · ·then anO(hj)approximation is given forj= 2,3, . . .byNj(h) =Nj-1h2+Nj-1(h/2)-Nj-1(h)2j-1-1The results can be written in a table:O(h)O(h2)O(h3)O(h4)1:N1(h)N(h)2:N1(h2)N(h2)3:N2(h)4:N1(h4)N(h4)5:N2(h2)6:N3(h)7:N1(h8)N(h8)8:N2(h4)9:N3(h2)10:N4(h)
Richardson’s ExtrapolationIf some error terms are zero, different and more efficientformulas can be derivedExample: IfM-N(h) =K2h2+K4h4+· · ·then anO(h2j)approximation is given forj= 2,3, . . .byNj(h) =Nj-1h2+Nj-1(h/2)-Nj-1(h)4j-1-1
Numerical QuadratureIntegration of Lagrange Interpolating PolynomialsSelect{x0, . . . , xn}in[a, b]and integrate the Lagrange polynomialPn(x) =ni=0f(xi)Li(x)and its truncation error term over[a, b]to obtainZ

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 30 pages?

Course Hero member to access this document

Term
Spring
Professor
Rieffel
Tags
NJ, dx, Gaussian quadrature, Composite Simpson
• • • 