homework9sol - ECE 303 ngwwk its Sfimng(Eva FMW 1L ‘9...

Info icon This preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 303: ngwwk its? Sfimng (Eva FMW 1L. ‘9 V‘Lé [mflgi.:mL3,,,:§ 2.1:; iqgl/Tfi «l é-FM“ hm” ' ' ' _ , L" 1' éfis‘mé’a M b) See; qaa‘wa Farm“; mm a». W WWW .. is, n ....~: {1’ "r. n?‘ 3 A 7 7 ._ v I,“ I = ,4 _ . I _ ' V. . a. L! , I (7% 2 ——> Guam: {M1} '2 <9 I. z; r .I I .,No4-T(.L, Awe, MJt/Ocu’éQkLEw. AQMAi. ,o/euv jug 57F VG'A’MEM- ’Ltwafingg .m-a *mwwg 3M Riga; = 052/445‘2- 55*? nm_ _ 0.35 Problem 9.1(b) 0.25 0.05 0.3 ' I 0.4 l I I L 05» 0] wavelength (Hm),- C:\Farhan\e—library\courses\ece 303 2005\prob9wlfib.m Page 1 October 27, 2005 12:15:07 AM % PROBLEM 9.1(b) %constants c = 3e8; muo = 4*pi*1e~7; epsilono = 8.85e—12; I eatao = sqrt(muo/epsilono); %wavelength 1D array lambda = [O.3:.OOl:O.9]*1e—6; %structure n2 = sqrt(3.5); eata2 = eatao/nZ; 12 = O.52e—6/(4*n2); %layer thickness k2 = 2*pi*n2./lambda; %layer wavevector‘lD array n3 = 3.5; eata3 = eatao/n3 7%actual computation using matlabs array processing features Gamma = (eata3/eata2 — l)/(eata3/eata2 + l); . eata = eata2*( l + Gamma*exp(—2*j*k2*12) )./( l — Gamma*exp(—2*j*k2*12) ); Gamma = (eata/eatao — l)./(eata/eatao + l); %plot results ‘ plot(lambda/le—6,abs(Gamma).A2); %labe;s xlabe;{‘wavelength (\mum)'); ylabe;('l\Gammal“{2}'); ‘ E title ‘Problem 9.1(b)‘); g 2 IFI ‘ 0.1 0.25 ' 0.2 0.15 0.05 - Problem 9.1(d) 6 I I 0.4 ._5" .027 wavelength (gm) 1 0.18 0.9 C:\Farhan\e—library\courses\ece 303 2005\prob9_lwd.m' Page 1 October 26, 2005 9:03:24 PM i___m_in_____________mwm______________r__im__________________________________ % PROBLEM 9.1(d) %constants c = 3e8; muo = 4*pi*le—7; epsilono = 8.85e—12; eatao = sqrt(muo/epsilono); %wavelength range lambda = [O.3:.OOl:fi9]*le—6; %lD array omega = 2*pi*c./lambda; %1D array %structure n2 = 1.5; eata2 = eatao/n2; 12 = 0.52e—6/(4*n2); %layer thickness k2 = 2*pi*n2./lambda; %layer wavevector 1D array %NO THIRD LAYER D4 = 2.8; eata4 = eatao/n4; l4 = O.52e—6/(4*n4); %layer thickness k4 = 2*pi*n4./lambda; %layer wavevector 1D array n5 = 3.5; eataS = eatao/nS; %actual computation using matlabs array processing features start from the right side and keep repeating the same code for\all layers % till you reach the left side .- ; o\° Gamma r (eata5/eata4 — l)/(eata5/eata4 + l); L eata = eata4*( l " Gamma*exp(—2*j*k4*l4) )./( l — Gamma*exp(-2*j*k4*l4) ); ' E Gamma = (eata/eata2 — l);/(eata/eata2 + l); « eata = eata2*( 1 ~ Gamma.*exp(—2*j*k2*12) )-/( l — Gamma.*exp(—2*j*k2*l2) )f Gamma = (eata/eatao " l)./(eata/eatao + l); ' %plot results plot(lambda/1e—6,abs(Gamma).AZ); %;abels , V x Xlabel('wavelength (\mum)‘); ‘ : yiabel('i\Gamma]A{2}‘); > title(‘Problem 9.1(d)'); Problem 9.2(b) .N‘=‘8. wavelength» (um) IT‘IZ- Problem 9.2(b) | l N32 N216 I 0.5 0.16,. f " 0.8 * *.9 wa’Velfengthmm) - ‘ C:\Farhan\e—library\courses\ece 303 2005\prob9m2_b.m I r Page 1 October 26, 2005 » 9:24:24 PM W % PROBLEM 9.2(b) %constants c = 3e8; ' muo = 4*pi*le—7; epsilono = 8.85e—12; eatao = sqrt(muo/epsilono); %wavelength range ~ lambda = [O.3:.OOl:.9]*le—6; %1D array omega = 2*pifc./lambda; %lD array %structure N=8; %number of pairs n2 : 2.4; eataZ = eatao/nZ; 127: O.52e—6/(4*n2); %layer thickness k2 = 2*pi*n2./lambda; %layer wavevector 1D array n3 = 1.5; eata3 2 eatao/n3; l3 2 O.52e-6/(4*n3); %layer thickness k3 = 2*pi*n3./lambda; %layer wavevector lD array D4 = 3.5; eata4 = eatao/n4; %actual computation using matlabs array processing features > % start from the right side and keep repeating the same code for all layers till you reach the left side o\0 ea:a = eata4 %starting mpedance for n=l:l:N Gamma = (eata/eata3 — l)./(eata/eata3 « 1); eata = ea:a3*( l +\Gamma.*exp(—2*j*k3*13) )./( 1 — Gamma.*exp(—2*j*k3*l3) ); Gamma = (eata/eataZ * l)./(eata/eata2 n l); - » g eata = ea:a2*( l + Gamma.*exp(—2*j*k2*12) )./( l — Gamma.*exp(-2*j*k2*12) ); F . end Gamma = (eata/eatao a l)./(eata/eatao + 1)} %plot results plot(lambda/le—6,abs(Gamma).A2); %labels x xlabel('Wavelength (\mum)'); ylabel('i\GammalA{2}'); title('Problem 9.2(b)'); 6 Problem 9.3(3) 0.9L 0.8% I I I Angle 91 (degrees) '80 100 C:\Farhan\e—library\courses\ece 303 2005\prob9fl3_a.m Page 1 October 27, 2005 12:08:35 AM % PROBLEM 9.3(a) %constants c = 3e8; muo = 4*pi*1e—7; epsilono = 8.85e—12; eatao = sqrt(muo/epsi10no); %wave1ength lambda = O.52*1e—6; %structure i ln2 = sqrt(3.5); ' ' eata2 = eatao/n2; 12 = 0.52e-6/(4*n2); %1ayer thickness n3 = 3.5; eata3 eatao/n3 %ang1e of incidence'thetaml range theta_1 : [0:.1:89]*pi/180; %1D array %other angles theta~2 = asin((1.0/n2)*sin(theta_1)); %1D array 5 thetagB asin((n2/n3)*sin(theta‘2)); %1D array . I E k22 = 2*pi*n2*cos(thetaa2)/1ambda; %1ayer z-wavevector 1D array % effective impedances , V - : ea:a2_eff = eata2./cos(theta_2); %1D array 1 ea:a1‘eff = eatao./cos(theta_1); %1D array eata3_eff eata3./cos(theta_3); %1D array ll %actua1 computation using matlabs array processing features Gamma = (eata3_eff./eata2_eff — 1)./(eata3_eff;/eata2aeff + 1); eata_eff = ea:a2_eff.*( 1 + Gamma.*exp(e2*j*k22*12) )./( 1 — Gamma.*exp(—2*j*k22*12) ); VGamma = (eatameff./eata1_eff — 1)./(eata_eff./eata1_eff + 1); %p10t results > plot(thetam1*180/pi,abs(Gamma).A2); %;abels x1abe1('Ang1e \theta_{1} (degrees)‘); yLabe1(‘l\Gammal“{2}'); tit1e(’PrOb1em 9.3(a)'); ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern