Math_207_spring_2011_solution_3

MATH_207_Spring_2011_Solution_3
Download Document
Showing pages : 1 - 3 of 4
This preview has blurred sections. Sign up to view the full version! View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 207 Spring 2011 Dr. Smith Assignment 3 Total possible is 50 1. Find the limit if it exists, or show that the limit does not exist. a) (14.2 #14) 2 2 4 4 ) , ( ) , ( lim y x y x y x + b) (14.2 #16) 2 2 2 2 ) , ( ) , ( 2 sin lim y x y x y x + Four points c) (14.2 # 20) 2 2 2 2 2 2 ) , , ( ) , , ( 3 2 lim z y x z y x z y x + + + + Four points 2. Determine the set of points at which the function is continuous. a) (14.2 # 30) 2 2 1 ) , ( y x y x y x F + + = b) (14.2 #32) 2 2 ) , ( y x e y x f y x + + = Four points 3. (14.2 # 40) Use polar coordinates to find . ) ln( ) ( lim 2 2 2 2 ) , ( ) , ( y x y x y x + + 4. Find all first partial derivatives for a) (14.3 #22) f(x,y) = x y Four points (2 for each partial) b) (14.3 #26) f(x,t) = arctan(x t) c) (14.3 #38) u = sin(x 1 + 2x 2 + + nx n ) Four points 5. a) (14.3 #42). Find the partial derivative f z (0,0, /4) if z y x z y x f 2 2 2 sin sin sin ) , , ( + + = Since f is a function of z, z is an independent variable. Since f is a function of z, z is an independent variable....
View Full Document