5ta Presentacion - Presentacin 4 SISTEMAS DE ECUACIONES...

Info icon This preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
SISTEMAS DE ECUACIONES LINEALES CON MAS DE DOS VARIABLES Presentación 4
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Sistemas con 3 variables Podemos aplicar el método de sustitución o el método de reducción a sistemas de más de 2 variables. La regla es que debemos tener, al menos, la misma cantidad de ecuaciones que de variables. Por ejemplo, resolver ? + ? + ? = ? ?? − ? + ?? = ? −? + ?? + ? = ?
Image of page 2
Sistemas con 3 ecuaciones método de reducción Sugerencias: Trate de mantener en la primera posición una ecuación con coeficiente igual a 1. Trate de utilizar la primera ecuación para eliminar la misma variable de las otras dos ecuaciones. Una vez, dos ecuaciones se han reducido a dos variables, utilice estas dos ecuaciones para eliminar otra variable. Use sustitución invertida ( backward substitution ) para determinar los valores de las demás variables.
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Ejemplo (cont.) ? + ? + ? = ? ?? − ? + ?? = ? −?? − ? = −? Sumar la primera ecuación a la segunda. ? + ? + ? = ? ?? + ?? = ?? −?? − ? = −? Sumar la segunda con la tercera.
Image of page 4
Ejemplo (cont.) ? + ? + ? = ?
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern