logic 3-4

# logic 3-4 - AvB ~A A ┴ B B B B-AvB ~A A ┴ B B B B ~A B...

This preview shows pages 1–4. Sign up to view the full content.

PvQ P R Q R R v Elim P ~P ~ Intro P ┴ Elim P Q P Q Intro P Q P Q Elim (A^B) C GOAL: C A B A^B C Elim 1, 4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
B C GOAL: (A^B) C A^B B C (A^B) C Intro A B GOAL: ~A ~B A B Elim 1, 3 ~A ~ Intro TO PROVE: ~(AvB) (~A ^~B) ~(A^B) A AvB ~A B AvB ~B ~A^~B ~(AvB) (~A ^~B) Deduction Theorem: Simple: If S1 ├ S2, then ├ S1 S2 General: If Γ U {S1} ├ S2, then Γ ├ S1 S2 Γ = {AvB}, S1 = ~A, S2 = B

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AvB ~A A ┴ B B B B----AvB ~A A ┴ B B B B ~A B ~(AvB) …PROOF1 ~A^~B ~A^~B …PROOF2 ~(AvB) (AvB) (~A^~B) Intro, PROOF1, PROOF2 GOAL: (A^(BvC)) ((A^B)v(A^C)) A^(BvC) A BvC B A^B (A^B)v(A^C) C A^C (A^B)v(A^C) (A^B)v(A^C) (A^B)v(A^C) A^B A B BvC A^(BvC) A^C A C … (A^(BvC)) ((A^B)v(A^C))...
View Full Document

## This note was uploaded on 04/07/2008 for the course PHILOSOPHY 407 taught by Professor Dean during the Spring '08 term at Rutgers.

### Page1 / 4

logic 3-4 - AvB ~A A ┴ B B B B-AvB ~A A ┴ B B B B ~A B...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online