logic 3-4 - AvB ~A A B B B B----AvB ~A A B B B B ~A B...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
PvQ P R Q R R v Elim P ~P ~ Intro P ┴ Elim P Q P Q Intro P Q P Q Elim (A^B) C GOAL: C A B A^B C Elim 1, 4
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
B C GOAL: (A^B) C A^B B C (A^B) C Intro A B GOAL: ~A ~B A B Elim 1, 3 ~A ~ Intro TO PROVE: ~(AvB) (~A ^~B) ~(A^B) A AvB ~A B AvB ~B ~A^~B ~(AvB) (~A ^~B) Deduction Theorem: Simple: If S1 ├ S2, then ├ S1 S2 General: If Γ U {S1} ├ S2, then Γ ├ S1 S2 Γ = {AvB}, S1 = ~A, S2 = B
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AvB ~A A B B B B----AvB ~A A B B B B ~A B ~(AvB) PROOF1 ~A^~B ~A^~B PROOF2 ~(AvB) (AvB) (~A^~B) Intro, PROOF1, PROOF2 GOAL: (A^(BvC)) ((A^B)v(A^C)) A^(BvC) A BvC B A^B (A^B)v(A^C) C A^C (A^B)v(A^C) (A^B)v(A^C) (A^B)v(A^C) A^B A B BvC A^(BvC) A^C A C (A^(BvC)) ((A^B)v(A^C))...
View Full Document

Page1 / 4

logic 3-4 - AvB ~A A B B B B----AvB ~A A B B B B ~A B...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online