3.4
Velocity
and
Other
Rates
of
Change
Instantaneous Rate of Change
f
¢
H
a
L
=
lim
h
Æ
0
f
H
a
+
h
L

f
H
a
L
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
h
Velocity, Speed, andAcceleration
If the position function is described by s
H
t
L
, then
velocity
=
v
H
t
L
=
s
¢
H
t
L
speed
=
»
v
H
t
L»
=
»
s
¢
H
t
acceleration
=
a
H
t
L
=
v
¢
H
t
L
=
s
¢¢
H
t
L
Free

fall Constants on Earth
English units
Æ
s
=
16t
2
a
32
ft
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
sec
2
Metric units
Æ
s
4.9t
2
a
9.8
m
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
sec
2
Marginal Cost
Marginal Cost is the derivative of the Cost function.
1.
A
particle
moves
along
a
line
so
that
its
position
at
any
time
t
≥
0
is
given
by
s
H
t
L
=
t
2

t

4,
where s is
measured in meters and t is measured in seconds. Find
H
a
L
the displacement in the first 3 seconds
H
b
L
the average velocity in the first 3 seconds
H
c
L
the acceleration at t
=
3 seconds
H
d
L
where the particle is when s is a minimum
H
e
L
the velocity when t
=
3 seconds
H
a
L
s
H
3
L

s
H
0
L
=
2

H

4
L
=
6 meters
H
b
L
average velocity
=
6 meters
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
This is the end of the preview.
Sign up
to
access the rest of the document.
 Spring '08
 GREENE
 Calculus, Derivative, Rate Of Change, Velocity, HtL, ÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄ

Click to edit the document details