math192_hw12sp06

# math192_hw12sp06 - HW12 Solutions 16.5 Surface Area and...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: HW12 Solutions 16.5 Surface Area and Surface Integrals 2. p = k, f = 2xi + 2yj - k |f | = 2 0 1 2 12 (4r |f | dA R |f p| S = + R 3/2 6 1) d 2 = 4x2 + 4y 2 + 1 and |f p| = 1; x2 + y 2 6 2 2 6 2 2 + 4y 2 + 1dxdy = 2 + 1rdrd = 4x 4r 4r + 1rdrd = R 0 2 2 49 6 d 0 = = 49 3 2 2 dA = 2 6. S = R 2z R 8 g(x, y, z)d = + 2 2 14. 3 wedge |f | dA = |f p| 1 R 2- (x2 + y2) dA = 2 1 0 2 1 rdrd = 2 2 - 2 2 2-r 17. f (x, y, z) = 2x + 2y + z = 2 f = 2i + 2j + k and g(z, y, z) = x + y + (2 - 2x - 2y) = 2 - x - y p = k, |f | = 3 and |f p| = 1 d = 3dydx; z = 0 2x + 2y = 2 y = 1 - x 3 S (2 - S gd = 1 3 x2 2 - 2x + 2 0 x - y)d = 3 dx = 2 a z 1 1-x (2 0 0 - x - y)dydx = 3 1 0 (2 - x)(1 - x) = 1 2 (1 - x) 2 dx = 24. Flux = R (za) dxdy = R 1 a2 dxdy = a2 (Area of R) = 4 a2 28. g(x, y, z) = x2 +y 2 -z = 0 g = 2xi+2yj-k |g| = 4x2 + 4y 2 + 1 = 4 (x2 + y 2 ) + 1 2 2xi+2yj-k 8x2 n= 2 2 F n = +8y 2-2 ; p = k |g p| = 1 d 4 (x2 + y 2 ) + 1dA Flux 2 4(x +y )+1 8x 2 4(x +y )+1 = R +8y -2 4(x2 +y 2 )+1 2 4 (x2 + y 2 ) + 1dA = 2 0 1 0 R 8x2 + 8y 2 - 1 dA; z = 1 and x2 + y 2 = z x2 + y 2 = 1 Flux = 8r2 - 2 rdrd = 2 3 3 int3 z dxdy = 0 -3 3 3 S yd = -3 0 y 34. f = 2yj + 2zk |f | = 4y 2 + 4z 2 = 6 3 z 0 d = 2z dA = z dA; M = S 1d = X zd = 3 3 -3 0 z 3 z ddxdy = 54; Mxz = 3x 9-y 2 4(y 2 + z 2 ) = 6; p = k |f k| = 2z since 3 3 3 dxdy = 9; Mxy = -3 0 9-y 2 3 z dxdy = 0; Myz = S xd = 3 3 -3 0 dxdy = 27 2 . Therefore, x = ( 27 2 ) 3 3 -3 0 3y 9-y 2 dxdy = = 6 9 3 = 2 , y = 0, and z = 54 9 16.6 Parametrized Surfaces 4. In cylindrical coordinates, let x = r cos , y = r sin , z = 2 x2 + y 2 z = 2r. Then r(r, ) = (r cos )i + (r sin )j + 2rk for 0 r 6, 0 2 14. (a) In a fashion similar to cylindrical coordinates, but working in the xz-plane instead of the xy-plane, let x = u cos v, z = u sin v where u = x2 + z 2 and v is the angle formed by (x, y, z), (y, 0, 0), and (x, y, 0) with vertex (y, 0, 0). Since x - y + = 2 y = x + 2z - 2, then 2z r(u, v) = (u cos v)i + (u cos v + 2u sin v - 2)j + (u sin v)k, 0 u 3 and 0 v 2 (b) In a fashion similar to cylindrical coordinates, but working in the yz-plane instead of the xyplane, let y = u cos v, z = u sin v where u = y 2 + z 2 and v is the angle formed by (x, y, z), (x, 0, 0), and (x, y, 0) with vertex (x, 0, 0). Since x - y + 2z = 2 x = y - 2z + 2, then r(u, v) = (u cos v - 2u sin v + 2)i + (u cos v)j + (u cos v)k, 0 u 2 and 0 v 2 2 2 x +y r = 3 , 3 r 4 and 0 2. then, 20. Let x = r cos and y = r sin z = 3 r 1 r(r, ) = (r cos )i + (r sin )j + 3 k rr = (cos )i + (sin )j + 3 k and r = (-r sin )i + i j k 1 1 1 cos sin = - 3 cos i - 3 r sin j + r cos2 + r2 sin2 k = (r cos )j rr r = 3 -r sin r cos 0 1 - 3 cos i - 2 0 1 3 r sin j + 4 r 10 drd = 7 3 10 3 3 rk |rr r | = 1 2 9r 1 cos2 + 9 r2 sin2 + r2 = 10r 2 9 = r 10 3 A= 24. Let the parametrization be r(r, ) = (r cos )i + (r sin )j + r2 k, 1 r 2, 0 2 A = 2 2 2 r 4r + 1drd = 17 17 - 5 5 6 0 1 30. Let the parametrization be r(, ) = (a sin cos )i + (a sin sin )i + (a cos )k, 0 2 S G(x, y, z)d = 2 0 /2 0 2, a cos 2 2 a sin dd = 2 2 4 3 a 0 34. Let the parametrization be r(, ) = (2 sin cos )i + (2 sin sin )j + (2 cos )k, 0 /4, 0 2 r = (2 cos cos )i + (2 cos sin )j - (2 sin )k and r = (-2 sin sin )i + i j k (2 sin cos )j r r = 2 cos cos 2 cos sin -2 sin = (4 sin2 cos )i+(4 sin2 sin )j+ -2 sin sin 2 sin cos 0 4 2 + 16 sin4 sin2 + 16 sin2 + cos2 = 4 sin ; y = (4 sin cos )k |r r = 16 sin cos 2 sin sin and z = 2 cos H(x, y, z) = 4 cos sin sin 2 /4 2 /4 H(x, y, z)d = 0 0 (4 cos sin sin )(4 sin )dd = 0 0 16 sin2 cos sin dd = 0 S 42. Let the parametrization z 2) and 0 2 i j rr r = -r sin r cos cos sin be r(r, ) = (r cos )i + (r sin )j + 2rk, - r 1 (since 0 rr = (cos )i + (sin )j + 2k and r = (-r sin )i + (r cos )j k r r 0 = (2r cos )i + (2r sin )j - rk F nd = F |rr r | |rr r 2 r |ddr = (2r3 sin2 cos + 4r3 cos sin + r)ddr since F = (r2 sin2 )i + (2r2 cos )j - k S F 2 1 2 1 1 nd = 0 0 (2r3 sin2 cos + 4r3 cos sin + r)drd = 0 2 sin2 cos + cos sin + 2 d = 1 6 sin3 + 1 2 sin2 + 1 2 2 0 = ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online