LM 11.2_ Infinite series-problems

# LM 11.2_ Infinite series-problems - nanni(arn437 LM 11.2...

This preview shows pages 1–2. Sign up to view the full content.

nanni (arn437) – LM 11.2: Infnite series – maxwell – (56110) 1 This print-out should have 6 questions. Multiple-choice questions may continue on the next column or page – fnd all choices beFore answering. 001 (part 1 of 3) 10.0 points (i) Rewrite the series 2 + 4 7 + 8 49 + . . . + 2 · 2 3 7 3 using summation notation. 1. S = 3 s n = 1 2 p 2 7 P n 2. S = 3 s n = 0 2 p 2 7 P n 3. S = 3 s n = 0 2 p 7 2 P n 4. S = s n = 0 2 p 2 7 P n 5. S = 4 s n = 1 2 p 2 7 P n 002 (part 2 of 3) 10.0 points (ii) Rewrite the series 8 · 2 3 7 3 - 8 · 2 4 7 4 + 8 · 2 5 7 5 - . . . - 8 · 2 10 7 10 using summation notation. 1. S = 7 s n = 0 ( - 1) n 8 · p 2 7 P n 2. S = 10 s n = 3 ( - 1) n - 3 8 · p 2 7 P n 3. S = s n = 3 ( - 1) n - 3 8 · p 2 7 P n 4. S = 11 s n = 4 ( - 1) n - 3 8 · p 2 7 P n 5. S = 10 s n =3 ( - 1) n - 2 8 · p 2 7 P n 003 (part 3 of 3) 10.0 points (iii) Rewrite the series 3 · 2 9 7 9 - 3 · 2 10 7 10 + . . . + ( - 1) n 3 · 2 9+ n 7 9+ n + . . . + using summation notation. 1. S = s n =9 ( - 1) n 3 · p 2 7 P n 2. S = s n ( - 1) n - 9 3 · p 2 7 P n 3. S = s n =0 ( - 1) n 3 · p 2 7 P n 4. S = s n ( - 1) n - 9 3 · p 2 7 P n - 9 5. S = s n ( - 1) n - 9 3 · p 7 2 P n 004 10.0 points Determine whether the series s n 2 ± 4 3 ² n is convergent or divergent, and iF convergent,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

LM 11.2_ Infinite series-problems - nanni(arn437 LM 11.2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online