Analog Integrated Circuits (Jieh Tsorng Wu)

Yi n2 gm2 go2 at frequencies vo 1 vs 2 go2 glcl gm2

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ST Cascode Configuration VDD VDD Telescopic Cascode Folded Cascode I1 Vo Bias V 1 V in M2 V 1 V in R S R L C v in S v g1 C C I2 L v o g gm2 = gm2 + gmb2 Multiple-T Gain Stages r gd1 r gs1 v m1 g1 Vo S g’ v m2 s2 R Bias M1 R M1 M2 o2 R L C’ R L C L L v s2 o1 C x Cx = Cd b1 + Csb2 + Cgs2 6-8 CL = CL + Cd b2 + Cgd 2 Analog ICs; Jieh-Tsorng Wu MOST Cascode Low-Frequency Characteristics The output impedance looking into M2’s drain is Rot2 = ro1 + (gm2ro1 + 1)ro2 ≈ gm2ro1ro2 The input admittance looking into M2’s source is Gi n 2 ≈ gm2 go2/GL + 1 The overall voltage gain is gm2 gm2ro1ro2 RL vo gm1 ≈− × = gm1 × ≈ gm1 × (Rot2 Av = vi n go1 + Gi n2 go2 + GL ro2 + gm2ro1 ro2 + RL • Let gm = gm1 = gm2, ro = ro1 = ro2, and gm gm gm ≈ go ≈ Gi n 2 ≈ goRL + 1 gmro + 1 Multiple-T Gain Stages 6-9 RL) 2 go. If RL = Rot2 = gmro , then gm gm 1 gm Av ≈ − ≈− 2go go + GL 2 go 2 Analog ICs; Jieh-Tsorng Wu MOST Cascode Zero-Value Time Constant Analysis Using the zero-value time constant method, we have Rgs10 = RS Rx0 = ro1 Ri n2 ≈ ro1 Rgd 10 = RS + Rx0 + gm1RS Rx0 (1/gm2 )(go2/GL + 1) RL0 = RL T0 = Rgs10 Cgs1 + Rgd 10Cgd 1 + Rx0Cx + RL0 CL Ri n2 ≈ ro Rx0 gmro ≈ 2 Rgd 10 2 ro gmroRS gmro ≈ ≈ RS + + 2 2 2 2 ⇒ T0 go. If RL = Rot2 = gmro and RS = ro, then 2 RL0 ω−3dB = 1/ gm2ro1ro2 2 • Let gm = gm1 = gm2, ro = ro1 = ro2, gm ro = 2 Rot2 ≈ RL 2 ro gmro gmro Cgd 1 + Cx + CL T0 = RS Cgs1 + 2 2 2 • RL0CL usually is the dominant term, unless RS is very large. Multiple-T Gain Stages 6-10 Analog ICs; Jieh-Tsorng Wu MOST Cascode AC Characteristics Let RL = Rot2 = gm2ro1ro2, then gm2 Gi n 2 ≈ go2RL + 1 ≈ gm2 gm2ro1 + 1 ≈ go1 The dc gain is gm2 gm1 1 gm1 gm2 × ≈− · · Av (0) ≈ − 2 go1 go2 go1 + Gi n2 go2 + GL The dominant pole is 1 2 ≈− p1 = − RL0 CL gm2ro1ro2CL At frequencies where |p1 | Av (s) = Multiple-T Gain Stages Av (0) 1− s p1 ω ≈ |p2|, Av (0) ωu gm1 ≈− =− s sCL s −p 1 6-11 gm1 ωu = Av (0) · p1 = CL Analog ICs; Jieh-Tsorng Wu MOST Cascode AC Characteristics The second pole is approximately at p2 = − go1 + Yi n2 Cx Yi n2 is the resistance looking into the M2’s source at high frequencies. Yi n2 = gm2 − go2 • At frequencies ω vo −1 vs 2 (go2 + GL)/CL, gm2 + go2 gm2 vo = ≈ vs2 go2 + GL + sCL sCL ⇒ Yi n2 ≈ gm2 go2 1− + go2 ≈ gm2 sCL gm2 gm2 ωT p2 ≈ − ≈− ≈− Cx K Cgs2 K where K is between 1 and 2 (usually closer to 1). Multiple-T Gain Stages 6-12 Analog ICs; Jieh-Tsorng Wu Active Cascode Configuration Vo -g I o V bias A m2 (A+1) g v o v 2 v mb2 2 Vo i o M2 M2 g o2 M3 v 2 Vi M1 g v m1 i C2 V in g o1 M1 C2 = (A + 1)(Cgs2 + Cgd 3) + Cgs3 The M2’s transconductance is boosted as gm2 = gm2(A + 1) + gmb2, thus Rot2 = ro1 + ro2 + gm2ro1ro2 ≈ [gm2 (A + 1) + gmb2]ro1 ro2 Gi n 2 ≈ gm2(A + 1) + gmb2 go2/GL + 1 Multiple-T Gain Stages Gi n2 = gm2(A + 1) + gmb2 + go2 6-13 if RL = 0 Analog ICs; Jieh-Tsorng Wu Active Cascode Characteristics The equivalent transconductance is io Gm = vi vo =0 Gi n 2 = gm1 × = gm1 go1 + Gi n2 1− 1 1 + [gm2(A + 1) + gmb2]ro1 + ro1/ro2 • If A(s) has a dominant pole, i.e, A(s) = ao/(1 − s/p1 ) ≈ −ωu/s, ωu = ao · |p1|. The transfer function Vo/Vi has an additional zero and pole at z = −ωu p = −ωu − 1 ≈ −ωu gm2ro1ro2CL CL = Capacitor at Vo • The non-dominant pole at the M2’s source is p2 ≈ gm2 C2 = gm2(A + 1) + gmb2 (A + 1)(Cgs2 + Cgd 3) + Cgs3 gm2 ≈ Cgs2 + Cgd 3 p2 is degraded slightly by the addition of amplifier A. Multiple-T Gain Stages 6-14 Analog ICs; Jieh-Tsorng Wu Super Source Follower Configuration VDD g I2 C V2 Vi R = R1 = io = 0 Multiple-T Gain Stages C 2 g o1 Vo I1 vo Av (0) = vi g v m1 gs1 v gs1 Io vi =0 2 v2 C vo Ro = io R vi M2 M1 gd1 v mb1 o L C v o gs1 L g v m2 2 R ro1 + R2 [1 + (gm1 + gmb1)ro1 ](1 + gm2R2 ) gm1ro1 1 + (gm1 + gmb1)ro1 + R 2 + ro 1 R1 (1+gm2R2 ) 6-15 ≈ ≈ io 1 R L C L 1 1 gm1 + gmb1 gm2ro1 gm1ro1 1 + (gm1 + gmb1)ro1 + g 1 m2 ro 2 Analog ICs; Jieh-Tsorng Wu Differential Gain Stages Jieh-Tsorng Wu ES A July 16, 2002 1896 National Chiao-Tung University Department of Electronics Engineering Emitter-Coupled Pair VCC Assume RC1 Vo1 Vi 1 Ic1 • Q1=Q2. RC2 Ic2 Q1 Vo2 Q2 IE E • RC1 = RC2 ≡ RC . Vi 2 • Q1 and Q2 don’t saturate. • Neglect rb, ro, and rµ. RE E • Neglect RE E , i.e, RE E → ∞. VEE Vi d ≡ Vi 1 − Vi 2 Vo1 = VCC − Ic1RC Ic1 ≈ IS 1 eVBE 1/UT Differential Gain Stages Icd ≡ Ic1 − Ic2 Vo2 = VCC − Ic2RC Ic2 ≈ IS 2 eVBE 2/UT IS 1 Vod = Vo1 − Vo2 = −(Ic1 − Ic2)RC = −Icd RC Ic1 = IS 2 ⇒ = e(VBE 1−VBE 2)/UT = eVi d /UT Ic2 7-2 Analog ICs; Jieh-Tsorng Wu Emitter-Coupled Pair Large-Signal Behavior Summing currents at the common emitter node with αF 1 = αF 2 ≡ αF αF IE E = Ic1 + Ic2 = Ic1 1 + e Icd = Ic1 − Ic2 = αF IE E −Vi d /UT ⇒ Ic1 = − 1 1 1+ e−Vi d /UT 1+ Vod = Vo1 − Vo2 = −Icd RC = −αF IE E RC tanh Differential Gain Stages αF IE E 7-3 1+ e+Vi d /UT Vi d 2UT e−Vi d /UT Ic2 = αF IE E 1 + e+Vi d /UT = αF IE E tanh = αF IE E RC tanh Vi d 2U T −Vi d 2UT Analog ICs; Jieh-Tsorng Wu Emitter-Coupled Pair with Emitter Degeneration • Series feedback used to exchange gain for linearity. • Linear input range increased by approximately same factor gain is reduced. • Doesn’t increase linear output range. Differential Gain Stages 7-4 Analog ICs; Jieh-Tsorng Wu Source-Coupled Pair VDD I dd Assume R D1 R D2 V o1 I V o2 V I V i1 • M1=M2. SS I...
View Full Document

This note was uploaded on 03/26/2013 for the course EE 260 taught by Professor Choma during the Winter '09 term at USC.

Ask a homework question - tutors are online