Signal Processing and Linear Systems-B.P.Lathi copy

# 93b shows t hat 1399b 13102 i t follows t hat yk

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: u (t + 5) - + 2(t - [e-(t-5) 5)e-(t-5) + 2] u (t _ 5) (a) C ausal ( b) Noncausal (c) Noncausa1 (d) Noncausal. (D + 3)Y1(t) = J (t), (D + 3)Y2(t) = D J(t) 1 .8-3 qo(t) = D~aqi(t), ( D + a )h(t) = t qi(t) C hapter 2 2 .2-1 Ziemer, R.E., W.H. Tranter, a nd D.R. Fannin, Signals and Systems, Macmillan, New York, 1983. = 6 4c2/7 1 .7-2 O nly (a) a nd (f) are time-invariant. Soliman, S., and M. S rinath, Continuous and Discrete Signal and Systems, Prentice-Hall, Englewood Cliffs, N.J., 1990. Taylor, S. J ., Principles o f Signals and Systems, McGraw-Hill, New York, 1994. P el M t) = (4 t +l)u(t+l)-6tu(t)+3u(t)+(2t-4)u(t-2), h (t) = t 2u(t)-(t2-2t+8)u(t-2)-(2t-8)u(t_4) 1 .4-2 1 .7-7 = 256/7, 2 .3-2 + 5>' + 6, >.2 + 5>' + 6 = 0, - 2, - 3, a nd e - 2t , e - 3t oCt) + ( e- 2t + e - 3t )u(t) 2 .3-4 (2 + 3 t)e- 3t u(t) (a) >.2 (b) 5 e-2t _ 3 e-3t ( b) t e-atu(t) (c) ! t 2u(t) 2 .4-6 (a) (1 - cost)u(t) ( b) sin t u(t) + ! e- 2t )u(t) ( b) ( e- 2t - e- 3t )u(t) (c) [(2 _ t )e-2t _ 2 e-3tju(t) 2 .4-5 (a) t u(t) 2 .4-8 (a) (~- ~e-3t 2 .4-10 ( a) v h[0.555 - e-2t cos(3t + I 23.7°)ju(t) ( b) 4 [e- t _ ~e-2t cos(3t + 7 l.560)ju(t) 2 .4-11 (a) ( e- t - e- 2t )u(t) ( b) e6 (e- t - e- 2t )u(t) (c) e - 6 [e-(t-3) _ e - 2(t-3)ju(t _ 3) 2 .4-13 t an- 1 t (d) (1 - e-t)u(t) - [1 - e-(t-1)ju(t - 1) +~ 2 .4-15 1 - cost for 0 ::; t::; 2.,.., c ost - 1 for 2.,..::; t::; 4 "",0 otherwise. 2 .4-21 H (s) = e -sT. 2 .5-1 (a) i e-3t - !e- 4t + ~ ( b) ! e- 3t _ ~e-4t + ~e-t (c) e -3t _ e -4t 2t 2 .5-3 ( a) ( ¥+¥t)e- _2e- 3t ( b) ( £+1ft)e- 2t 2 .5-4 £ -t e - 2t +!t 2 .5-5 ( 2-t)e-3t_2e-4t 2 .6-2 (a) Asympt. stable 2 .6-3 (a) 0 (b) marginally s table (b) marginally s table (c) unstable (c) B IBO u nstable 2 .7-2 W idth 0.6 ms, m aximum r ate 1667 pulses/sec. 2 .7-1 2 .7-3 (d) marginally stable. (a) No (a) 1 0-4 (b) Yes (b) 104 Hz (c) 104 pulses/sec. C hapter 3 3 .1-2 (a) c = 0.5 (b) E e 3 .4-1 (a) J (t) = 3 .4-3 = 1 /12 3 .2-1 C n, i + ~ 2::=1 (-sn c osnm = Cn3 = 0, Cn2 = - 1, C n, = ,,/2/.,.. = .,../2, ao = 0, bn = 0 a nd an = n~ sin(n.,../2) (c) Wo = 1, ao = 0.5, an = 0 = .,../3, ao = 0.5, bn = 0 a nd a n = ~(cos(';"') - cose;"') (a) Wo = 2, ao = 0.504, a n = 0.504( 1+{6n2 ) a nd bn = - 0.504( l+~~n2) (a) WO = .,../4, ao = 0, an = ~(n2'" s in n" - 1) a nd bn = ~ s in "','" 2 (a) Wo a nd bn = _ n1", (f) Wo 3 .4-4 3 .4-7 3 .4-9 All except (c) a nd (e) are periodic. Periods (a) 2.,.. (b) 2.,.. (d) 2 (f) I407r (g) 8.,../3 (h) 2.,.. (i) .,... 3 .4-11 J (t) ' " ! xo(t) - tX1 (t) - *X3(t) - ftx7(t) 3 .4-12 J (t) = 839 -~t + t ( ~t3 - ~t) + ... 840 3 .5-1 Answers t o Selected problems ( b) wo = 1 /5, D n = nl" s in(mr/5) (d) wo = 2, Do = 0, D n = --f,;(n~ sin(n2") - cos(n2") (e) 3 .5-5 WQ 6 .3-9 = 21r/3, Do = 1 /6, a nd D n = 2 3,,2 [e-ihn/3(~ + 1) - 1] N=3 3 .5-6 N = 6 3 .5-7 N = 2 3 .6-1 yet) = 4.1-6 4.3-2 ( a) 4 _2e-jw_2e-j2w 2W w2 - 4.3-3 ( a) ~ sin 2(wTJ ( a) ~ { sinc 2 4 .3-7 ( a) ~sinc(t)cos4t D ( b) liW2-~;w ["(W;lO)] ( (a) =;tsinc [wo(t _ to)] 3 (I_j2w_e...
View Full Document

## This note was uploaded on 04/14/2013 for the course ENG 350 taught by Professor Bayliss during the Spring '13 term at Northwestern.

Ask a homework question - tutors are online