Signal Processing and Linear Systems-B.P.Lathi copy

# B4d a nd t herefore t he a nswer given by t he c

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y t he c alculator ( tan- l (j3) == - 71.6°) is c orrect (see Fig. B.4d). 1 - j3 == v'loe- j7 1. 6 ° i i • 1m 1m o C omputer E xample C B.1 E xpress t he following numbers in polar form: ( a) 2 + j 3 ( b) - 2 + j l MATLAB f unction cart2pol(a,b) c an b e used t o convert t he complex number a + j b t o its polar form. Re ..... 3 e-i3 • = -3 -31t !!. 2 (a) Re ..... [ Zangle.ln.J'ad,Zmag]=cart2pol(2,3) Z angle_inJad = 0 .9828 Zmag = 3.6056 Z angle_in_deg=Zangle.ln..rad * ( 180 / pi) Z angle_in_deg-56.31 T herefore z == 2 + j 3 == 3.6056ej56.31 ° (d) (c) i i 1m 1m -41t 41t Re ..... (b) [ Zangle.ln.J'ad , Zmag] = eart2pol( - 2,1) Z angle_inJad = 2 .6779 Zmag = 2.2361 Z angle_in_deg=Zangle.ln..rad*(180/pi) Z angle_in_deg=153.4349 Therefore z = - 2 + j l == 2.2361ej153.4349' F ig. B .5 F rom polar t o C artesian form. o Note t hat M ATLAB a utomatically takes care of t he q uadrant in which t he complex number lies. 0 • E xample B .2 R epresent t he following numbers in t he complex plane a nd express t hem in Cartesian form: ( a) 2e j ,,/3 ( b) 4 e- j3 ,,/4 ( e) 2 e j ,,/2 ( d) 3 e- j3 &quot; ( e) 2e j b ( f) 2 e- j4&quot;. ( a) 2e j ,,/3 == 2 (cos ~ + j sin ~) == 1 + j V3 ( f) (e) (see Fig. B.5a) ( b) 4 e- j3 ,,/4 == 4 (cos ¥ - jsin ¥) = - 2V2 - j2V2 (see Fig. B.5b) ( e) 2e M2 == 2 (cos ~ + j sin ~) == 2(0 + j 1) == j 2 (see Fig. B.5c) jh ( d) 3 e= 3(cos 371' - jsin 371') == 3 (-1+jO) == - 3 (see Fig. B.5d) j4 ( e) 2 e &quot; == 2 (cos 471' + j sin 471') == 2(1 + jO) = 2 (see Fig. B.5e) ( f) 2 e- j4&quot; = 2(cos 471' - j sin 471') = 2(1 - jO) = 2 (see Fig. B.5f) • C omputer E xample C B.2 R epresent 4 e- j ¥ in C artesian form. MATLAB function poI2cart(8, r ) converts t he complex number r ejD t o C artesian form. [ Zreal,Zimag]=poI2eart(- 3*pi/ 4 ,4) Z real--2.8284 Zimag=-2.8284 Therefore 4 e- j ¥ = - 2.8284 - j2.8284 0 Arithmetical Operations, Powers, and Roots of Complex Numbers To perform addition a nd s ubtraction, complex numbers should be expressed in Cartesian form. Thus, if 12 B ackground Zl B.1 13 Complex Numbers Zl = 3 + j 4 = 5 ei53 .1' ~ a nd ( 3+j4)(2-j3) j3) = (2 + j 3)(2 - 1 8-j1 1 8-j1_18 = 22 + 32 = - 1-3- - .1 13 - J 13 D ivision: P olar F orm t hen Zl + Z2 = (3 + j 4) + (2 + j 3) = 5 + j 7 Zl I f Z l a nd Z 2 a re g iven in p olar form, we would need t o convert t hem i nto C artesian form for t he p urpose of adding (or s ubtracting). M ultiplication a nd division, however, can b e c arried o ut i n either C artesian o r polar form, although t he l atter proves t o b e m uch m ore convenient. T his is because if Zl a nd Z 2 a re expressed in p olar form as a nd Z2 j53 1 5e . ' = _ 5_ ej (53.1'-56.3') = _ 5_e-j3.2° V13e j56 .3' V13 V13 • I t is c lear from t his e xample t hat m ultiplication a nd division are easier t o accomplish in p olar form t han i n C artesian form. • E xample B .4 For Zl = 2e j ,,/4 and Z2 = 8e j ,,/3, find ( a) 2Z1 - Z2 ( b) 1.. (c) ~ ( d) ijZ2 Zl Z2 ( a) Since subtraction cannot be performed dire...
View Full Document

Ask a homework question - tutors are online