Math3333Day02Section3.11Final - Section 11 Ordered Fields The Field Axioms A1 For all x y x y and if x w and y z then x y w z A2 For all x y x y y x A3

# Math3333Day02Section3.11Final - Section 11 Ordered Fields...

This preview shows page 1 - 15 out of 15 pages.

Section 11: Ordered Fields
The Field Axioms: A1. For all , , and if and then . x y x y x w y z x y w z A2. For all , , x y x y y x A3. For all , , , x y z x y z x y z A4. There is a unique real number 0 such that 0 for all . x x x A5. For each there is a unique real number such that 0 x x x x   M1. For all , , , and if and then x y x y x w y z xy wz M2. For all , , x y x y y x M3. For all , , , x y z x y z x y z M4. There is a unique real number 1 such that 1 0 and 1 for all x x x DL. For all , , , x y z x y z x y x z
The Order Axioms: O1. For all , , exactly one of the following is true: x y x y x y x y O2. For all , , , if and , then x y z x y y z x z O3. For all , , , if , then x y z x y x z y z O4. For all , , , if and 0, then x y z x y z xz yz
Theorem: Let x , y , and z be real numbers. Then, (a) If , then x z y z x y (b) 0 0 x

#### You've reached the end of your free preview.

Want to read all 15 pages?

• Fall '08
• Staff
• Math, unique real number, O2.