This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: "1,; . :::: O) 4 37. Comd'aiém 6M . '3. From pas? experience, a company has found The? in carions of Transistors, 92% coniain no defecﬁva Transisiars; 3% coniain Two defective Transisfors, and 2% canmin Three defeci’ive fransisfors. ;g' 2 1:141 511% deémi'iwiﬁ 11éiiwmxg [87% (EmS   ~
a. What is fhe expec’red number of defective Transisfors? ‘ 11.1 id (1131101) a C a 3321“ :13? ‘3?)
:0%‘iﬂ{5§+ 6‘574.
, ., . .i i . 1 firs is
E3. Calcuia'i‘e The variance and sfandard deviation. m 1‘ ‘ O 151
o’xzqrbbw“5‘310‘42311651.ISE—Ligwi‘}"if: 21—13")? 3)* (3~ ! 5") ( 03:) : oooa0¥+ Qaﬂlél"€1;3+0u103\;’ 1:11 Oaitoéij m @T:ZEE> M...__...____M __ N A” "W .1 "L
57“ t: ( 0'33?“ "1,301‘Q: 1&5 (6—7” at. Aboui how many exim Transisfor‘s per day would "the company need to repiace The defecﬁve ones if if used 10 car'igns per day?
3106553) '2" i_.05’
FWﬁkmékfg 1. The number of sui’rs said per day at a remil s‘rore is shown in The iabie wiih “the. correqunding probabiii‘i’ies.
$ng Number bf sui‘rs said, X 19 20 21 22 23 Probabilities P00 0.2 0.2 0.3 0.2 0.1 a. What is fhe expec:ed number of Sui‘i's said per day?
/!/L D!  ﬁx”? .'; ifii if. 3%} +1 ENG {1 12:3 ,3, “5:13 5; EX 4'” “3‘2” 5. E } «if 42 iii 4 i) n M\. , . I
s. .1 I; V v”
11‘! Li} 7 VT 5; u I + :3 W b. If ‘rhe manager of The retail Siore wanfs To be sure The? he has enough suii‘s far ‘ihe next
5 days, how many shouid the manager purchase? ' ”HAM Mp1 a, ~1 m.“ “A,” Sgoi, Gad ad}? 1 '2. A io‘riery offers one $1000, one $500 prize, and five $100 prizes. One Thousand Tickets are
said a? $3 each. Whaf is your average payoff for one Ticker? How much does fhe loh‘ery
' "keep from each iicke’r in ihe iong run? \ i; “ax . 5 "a 2 3' {’62 '2‘ " i
W" m s i z" . . ' 'n "’" "‘ 2.7 it". w 1""! —._. " *' . n;
h \Oaﬂ (ifiaci03“§"1£3“5 2[:€:}.:Jis)2% intuié‘ﬁ {40539} ‘2‘" “1 iiii‘i
._ w t , k, .. in (Q 5:, averzikfgli “Pei? mtg
\ m La #2223 Erie {:2 f5; 2% i i
3. The probabiiiiy disiribu‘rion shownrepresents fhe number of Trips of five nighfs or more fha’r
American aduiis Take per year. (Thai is, 6% do no’r fake any frips [asfing five nights or more,
70% fake one frip iasii‘ng five nighis or more per year, 20% fake two Trip ias‘ring five nighi’s
or more per year, [email protected]% Take ﬂiree Trip lasting five nighi‘s or more per year, and 1&3 Take four
irip iasfing five nighfs or more peryear. a. What is fine expecied number of irips iasiing five nigh’rs or more per year Taken by
American aduiis? 2 6? i222 sis 2i 2s [.22 is i. i is 2» I “i ‘ii
’ GIN ”it"!
b. Caicula’re 'i'he variance and standard deviai'iim. 7;; . :3. (O "’"' ‘rvzg>wnfjﬁéﬁ>“} {)3 ﬂgiag‘itflﬂ) +61%? “5r&5>a(l aria”B ”j“
i K a“ f
C3“? 2,2210 wifwws} {O Ks Sfaﬁsﬁcs Name:
Random Variables Review Date: Period: 0 1. Give. two exampies of discrefe and coaﬁnuous varéables. D35¢rg+e ' ‘35 D4? £49éas—VEE‘; in 6*. ﬂﬂkﬁ S
W’ a? [4‘5 on a.» $354” £¢n+fmumaa °' Tempe FOAUWZU Hedcyﬁ" “a as shown. This is an exam 16: of a probability distribu‘rion. ,
Number of fies, X 4 Probabili'ry, [’00 0.30 0.5 a 1 0.08 0.02 a. Construc? a hisfogr'am of i'hjgz probabiﬁ’ry disfr‘ibu‘rion. 4322.3"! b. Find The foilowing probabiliﬁeswfzhow what decimals you added or‘ sub’rmcfed. 1. Find The probabiii'ry Tha‘r a cusfomer wilt buy more Than 1 Tie.
90 >1\ = .\ was? «9? ﬁ 62 2. Find The probabilify That a cusfomer wiEE buy 3 or less ﬁes.
PC¥ E 3:): ,3+. 5+” 2+ .og: .Cc‘a’, . 3. 130(22): .t+.og+.c?—zam
4. P(X:2)= A 3. A uniform densi’ry curve is constant between 0 and 4, and O eisewhera. Sketch The curve. \ eru.)
M a. What is The heighf of The. density curve?
\/'ﬁ
E). Find P(X : 2.65) = o ' c. FindP(X>2_3)= (LPZJQC/‘h: ‘3 cf. FindP(2.1;g><53,5)= methﬁVQ: ."sa: 2. A? Tyler‘s Tie Shop, Tyier found ’rhe probabitiﬁes The}? a cusfomer will buy 0, 1, 2,3, or 4 ﬁes, 23:? 4. Skefch The normal curve and Show oli your calcuiaﬁons. The average waiting Times To be seated for dinner of a popuiar resiauranf is 23.5 minufes, ‘
wifh a sfandard deviaiion of 3.6 minufes. Assume The variable is normaliy disfribui‘ed. When
a pofron arrives at ”(he resiauroni for dinner, find the probobiiii‘y The? fhe pofron wit! have To wait The following Time. ‘ x w? M {5995 .3“, 3' ‘93
a. Befween 15 and 22 minuies.
is“ tee“ a: 31“” 5'
'23» W
ng‘t‘g
.2: 7. ~— Ra 310i] 7% 1. _. normm\aé~9 (:2. 3k)“ J W» b. 20 minu‘ies or more.
'3 1 2.0 r 23 AS’ 3.6:: 5f», “0.9%21 {“3 ”3.3bH #351. «25 we «was i .. 3, M R
marmoioée‘;(miﬁﬁigrﬂi’ﬂmb:(96’3 Gail) 5. A chemical supply company currenfiy has in stock 100 Eb of a eerioin chemicoi, which if sells To
cusi'omers in 5—Eb iofs. Le? X = The number of iofs ordered by a randomiy chosen customer. The urobc'ibili disfribuﬁon of x is shown in ”the char? below.
3
.3 a. When“ is fhe expected number of iofs ordered by a cusiomer? ﬁx: é xifj’i 3: 3623 aw 261%»? $6334” hiﬂJ) ng 2° (:2: 3
QUWomgﬁﬁ; I<l $0 b. If The manager of The store won‘rs To be sure The? he has enough iois far The max? 5 '
“5 how many shouid The. manager have on hand? g€g5§3 2 ms” A+ leoo'ir i&,_ me he toga» an?“ 4kg. ekerr'xiﬂtodi. 6 A box containing Ten $1bilis,five $2 biils Three $5 bills one $10 bili and one $100 bilt A
person charged $20 To selec’r one bit! a. Consirucf a probabéiify disiribufion of The payoff amount X. 1?? b. Whiz? is The expec’red payoff for one ﬁche? if “the icing run?
;1'( Au?) 4— 2( FAQ) +§(”/3o+ WQ(/éa>*ioo{/§o) 3'» $.31? wwéﬁfa 1 u‘I\\ keep 5 3”}? In 4&4" \Iznq‘ wwh ‘
W c. How much'does The house expeci’w‘ro keep from each be? in The long run? 2:» w $23": #2; 3—57 . {(5% bend ti“, w,‘// A??? ﬁ/QeFS’. d. Calcula’re the sfandard deviqﬁon of 1rhea distribu’rion Show aii work including The formula
and how you plugged The numbers m. OVK :2 ‘1 éi€fé "Mm :gjm
{aw ;.3§:f(>"3+ (2,3,15§1('2§3 * (9%2’3516WB” ('0'?'2552['5f>+€°oﬂm57© 7' 1 H5?.u%95§" "$933k: v ...
View
Full Document
 Spring '13
 Robles

Click to edit the document details