sr w i43 r 2 n x n yi k r1 y hei w i

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: )r yn + V ( W ) ι nSr +W )( WSε ( W ) n 2 . . . Sr ( W ) n n xn r (2.42) (2.42) element of t he mat rix Sr ( W ), and V ( W ) i t o indicat e t he i t h T he case of a si ngl+ dep endn nt +var i(abl) ε obser vat i on i n ( 2.43) makes t he r ol e e V ( W ) ι eα V W e of t he mat ri x Sr ( W ) mor e t r anspar ent . We use Sr ( W ) i j in t his equat ion t o denoeectasParatmelhor dt pendenmat rix blre( obserandi onacima.o 3) makquehei t hl e T h t he iofj ahselemen e of t he t var ia especificação ( W )( 2 4 indicatest t existe e, i ngl e compreender a S W ), vat V i n i t admita e he r o roof t he mat ). x Suma )única variávelrdependente. Sr ( W ) icaso:t his equat ion t o w of V (apenas r ( W mor e t r anspa ent . We use Neste j in W ri deno e t + j t ( elemen2 + . . mat S Sr ( ) ), n [Sr ( W ) i 1tx 1rhe i ,Sr hW ) i 2 x t rof t,he . , +rixr ( WWi n xanrd] V ( W ) i t o indicat e t he i t h row of V ( W ). 1 k ( W ) i ι n α + V ( W ) i ε [Sr ( W ) i 1 x 1r + Sr ( W ) i 2 x 2r + , . . . , + Sr ( W ).i43) r ] (2 n x n yi = k r=1 y+ = hei ι W i V t + S [ case 1 W ) indep i 2 x 2r + , . . , a r ( W ) i n ie (2.43) t hat unlikV (tW )Srn(α +)ofx(1rhei ε r ( W )endent . dat+ Smodel,x n r ] (2.43) 36 I nt r oduct i on t o Spat i al Economet ri cs r yi wit h r espect t o x j=r1 is pot ent ially non-zer o, t aking a value It followsmenos( W 3)ι n ha+ unlike tε case of t he indep endent dat a model,3) + V( (2.4 A fr omV(2.4) t α thaja W ) he It e i , jt he delemene oofy tquehnão pect Sr (iW ). pot enespacialtn-zercaseking a ivcom t h er ivat iv t f he i mat rix tdependência isiaal so a derivada de y alue he o, t a wit r es o x is t lly no asywel l ined eongeir tixo.4éhidiferente h j m ghnorixf SheW ).ob ndenat tthemotso asr lb p tohe , 3 hat h de r the mat go tfromβr asdiferente w unlik he e of det er mfollowsyfrecta (2irat )helemenitllyfedoiescaset oequalindepItservtsoi onde adel,j t o k and wit h respeito pj tx r tsusua co tzero et potencialmente is n l da a ic β.e sm e ia i It r( Sendo este t oha.t tder ivertivat ofeyiofwiti hwit spr esptectx jtro is ipousuaiallydoes not oequal...
View Full Document

This note was uploaded on 05/01/2013 for the course ECONOMIA 001 taught by Professor Farinha during the Fall '10 term at Universidade de Lisboa.

Ask a homework question - tutors are online