{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Exemplo um bairro onde no existe coleta de lixo ter

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: + de w − β ) dist del i n ( 2.26) t akes t he for m of t he SD M . M odel s i nvol v i ng spat i al l y effect s paramet erstemos mais uman Chapt er 8 in t he cont ex t of Neste caso are discussed i vez o SDM. i nat i on fl ows and Chapt er 10 for t he case of limit ed dep endent ancis Group, LLC rancis Group, LLC odel s. 4. Externalidade O problema de externalidade espacial (positiva ou negativa) surge quando as características se um bairro tem um impacto direto sobre seu vizinho. Exemplo: um bairro onde não existe coleta de lixo, terá problemas de ratos e baratas. Este fenômeno, provavelmente reduz ion ext er nalit ies-based m ot iv ato preço do aluguel dos bairros vizinhos. • t ial cont ext , ext er nalit ies ( bot h posit iv e and negat ive) ar ising fr om od char act er i st i cs oft en have di r ect sensor y i mpact s. For ex ampl e, r ash pr ov i de habit at for r at s and snakes t hat may v i si t cont iguous of nei ghb or i ng home char act er i st i cs ( W X ) coul d pl ay a di r ect r ol e i n ing house pr ices cont ai ned i n t he vect or y , as shown i n ( 2.27) . y = α ι n + X β1 + W X β2 + ε (2.27) t o t hi s as t he spat i al l ag of X model or SLX , si nce t he model conEste modelo é denominado: Spatial lag of X (SLX) ati al l ags ( W X ) of nei ghbor i ng home char act er i st i cs as ex pl anat or y s. 5. Incerteza. Na maioria das situações não temos certeza quanto ao PGD deve ser empregado. • Vimos: SAR, SEM, SDM e o SLX • LeSage e Pace (2009) propõe modelos Baysianos que nos permitem t y m ot de t i on m o d el u n cer t ai nespecificari v aforma mais precisa o PGD a ser empregado. lied pr actice wEm rgeralt na ausência de certeza taint y r egPGD, costuma-se • e a e of en f aced with uncer quanto ao ar ding t he t yp e l t o empl oy as wstimar convcombinação do SAR euncer taint y and uncere el l as uma ent i onal paramet er do SEM. • gar di ng speci fi cati on of t he appr opr i at e ex pl anator y var i abl es. As an , supp ose t her e exist s uncer taint y r egar ding use of t he aut or egr essiv e odel specificat ion y = ρW y + X β + ε. I n par t i cul ar , we i nt r oduce I c r cat oi o t o i pv i v E spat i a...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern