{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

In conjunct ion wit h t he exogenous sample connect

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: in conjunct ion= wit h− tρW )exogenous sample connect21) y infor he − 1 ε ivit a (I n (2. i ned i n t he mat r i x W , we can f easi bl y est i mat e t he n × 1 vect or s a.t roducedi nheg calar 9)aramet( 2.ρ 1) d ia lscal ar eoi sGvari ant he spat i al e i n Comb t i n s ( 2.1 p and er 2 an y e ds t h n D e P of ce O PGD com esta característica é estimado com base no modelo de 2 (SE M). ε in conjunct ion wit h t he exogenous sample connect ivit y infor erro espacial (SEM). i ned i n t he mat r i x W , we can f easi bl y est i mat e t he n × 1 vect or 2 ε s a. Combi ni ng ( 2.19) and ( 2.21) y i el ds t he D GP of t he spat i al (SEM). −1 y = X β + ( I n − ρW ) ε (2.22) , spat ial het er oX eneit I n pr ovidesεanot her way of m(2.ivat,ing ssituação se • y Quando existe ρW ) − 1 aeX = g β + ( y − dependência espacial entreot 22) esta paassemelha o S modelos de efeitos ce. In t his tcase,cttihe dep endence onombe viewed as er r ortrabalha-se com I n rodu on t aos pat i al Ec can et ri csfixos, quando dep eny, spat ial het er ogeneitem rpainel. anot her way of mot ivat ing spadados y p ovides nce. In indep eNestet caso:ndence cansee hat ε ins(2.21)dis en- ced by is not t his •case, t he depX ? Suppo b t viewed a er r or ep r epla nden of e odel t he dist ur bances, wher e t her e is a por t ion t hat is cor r elat ed is not indep= ndentaof X ? Suppose t hat ε in (2.21) is r eplaced by (2.23) ae lanather dist urρW les Xnd+e t herr t is n p or t ion t hat is cendenttednoise. In o y varbab + a her a poe ioa t hat is indep or r ela iances, w γ odel t −1 −1 has ttor y a ar iables aρW a )por tγ +ht hat−isρindephe r educed for ms2f or a he v = mI nin (2.2) X ion ( Il eads W ) t endent noise. In (2. 4) for ( − nd 3 whic n to lana − ρh − 1( γ t 4) he fo .2 ) βnd tI)n whicW l)eadsl o +del wit h iid ms for a ( 2.25 2 m in + hasatnd (yr = 5X a(2.2(3he empir icaXtmohe) r educed fordist ur bances ) in 4) and ( 2y 5) and y he X (pir+ al)moWlX (it hρiid + ur bances in (2.26) .2= ρW t + em β ic γ...
View Full Document

{[ snackBarMessage ]}