{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Stitz-Zeager_College_Algebra_e-book

11 exponential and logarithmic functions exercises 1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: , ‘unusual steepness’ or cusps. (a) f (x) = √ (b) f (x) = 1 − x2 (d) f (x) = √ 3 16x x2 − 9 4 2 3 (c) f (x) = x (x − 7) 5x x3 + 8 3 1 (e) f (x) = x 2 (x − 7) 3 (f) f (x) = 1 3 (g) f (x) = √ 3 x(x + 5)(x − 4) x3 + 3x2 − 6x − 8 2. Use the transformations presented in Section 1.8 to graph the following functions. √ (a) f (x) = −2 3 x + 1 + 4 √ (b) f (x) = 3 4 x − 7 − 1 (c) f (x) = (d) f (x) = √ 5 √ 8 x+2+3 −x − 2 3. Solve the following equations and inequalities. (a) x + 1 = (b) (c) (d) (e) √ 2 3x + 7 √ 2x + 1 = 3 − 3x √ x + 3x + 10 = −2 √ 3x + 6 − 9x = 2 √ 2x − 1 = x + 3 (j) 5 − (4 − 2x) 3 = 1 √ (k) 10 − x − 2 ≤ 11 √ (l) 3 x ≤ x 4 1 2 (m) 2(x − 2)− 3 − 3 x(x − 2)− 3 ≤ 0 4 7 3 2 8 (n) − 4 (x − 2)− 3 + 9 x(x − 2)− 3 ≥ 0 3 2 3 (o) 2x− 3 (x − 3) 3 + x 3 (x − 3)− 3 ≥ 0 (f) x = 8 1 (g) x = 4 √ √ (h) x − 2 + x − 5 = 3 √ √ (i) 2x + 1 = 3 + 4 − x 1 2 4 (p) (q) 13 4 3 x (x √ 3 2 3 (x 3 5 1 2 2 + 4) 5 (x − 2)− 3 +...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online